This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for scalar product. Analogue of lmodvsass . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvscl.v | |- V = ( Base ` W ) |
|
| clmvscl.f | |- F = ( Scalar ` W ) |
||
| clmvscl.s | |- .x. = ( .s ` W ) |
||
| clmvscl.k | |- K = ( Base ` F ) |
||
| Assertion | clmvsass | |- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q x. R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvscl.v | |- V = ( Base ` W ) |
|
| 2 | clmvscl.f | |- F = ( Scalar ` W ) |
|
| 3 | clmvscl.s | |- .x. = ( .s ` W ) |
|
| 4 | clmvscl.k | |- K = ( Base ` F ) |
|
| 5 | 2 | clmmul | |- ( W e. CMod -> x. = ( .r ` F ) ) |
| 6 | 5 | adantr | |- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> x. = ( .r ` F ) ) |
| 7 | 6 | oveqd | |- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( Q x. R ) = ( Q ( .r ` F ) R ) ) |
| 8 | 7 | oveq1d | |- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q x. R ) .x. X ) = ( ( Q ( .r ` F ) R ) .x. X ) ) |
| 9 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
| 10 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 11 | 1 2 3 4 10 | lmodvsass | |- ( ( W e. LMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q ( .r ` F ) R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) |
| 12 | 9 11 | sylan | |- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q ( .r ` F ) R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) |
| 13 | 8 12 | eqtrd | |- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q x. R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) |