This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of cvlexchb2 for atoms. (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvlatexch.l | |- .<_ = ( le ` K ) |
|
| cvlatexch.j | |- .\/ = ( join ` K ) |
||
| cvlatexch.a | |- A = ( Atoms ` K ) |
||
| Assertion | cvlatexchb2 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( P .<_ ( Q .\/ R ) <-> ( P .\/ R ) = ( Q .\/ R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvlatexch.l | |- .<_ = ( le ` K ) |
|
| 2 | cvlatexch.j | |- .\/ = ( join ` K ) |
|
| 3 | cvlatexch.a | |- A = ( Atoms ` K ) |
|
| 4 | 1 2 3 | cvlatexchb1 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( P .<_ ( R .\/ Q ) <-> ( R .\/ P ) = ( R .\/ Q ) ) ) |
| 5 | cvllat | |- ( K e. CvLat -> K e. Lat ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> K e. Lat ) |
| 7 | simp22 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> Q e. A ) |
|
| 8 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 9 | 8 3 | atbase | |- ( Q e. A -> Q e. ( Base ` K ) ) |
| 10 | 7 9 | syl | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> Q e. ( Base ` K ) ) |
| 11 | simp23 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> R e. A ) |
|
| 12 | 8 3 | atbase | |- ( R e. A -> R e. ( Base ` K ) ) |
| 13 | 11 12 | syl | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> R e. ( Base ` K ) ) |
| 14 | 8 2 | latjcom | |- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( Q .\/ R ) = ( R .\/ Q ) ) |
| 15 | 6 10 13 14 | syl3anc | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( Q .\/ R ) = ( R .\/ Q ) ) |
| 16 | 15 | breq2d | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( P .<_ ( Q .\/ R ) <-> P .<_ ( R .\/ Q ) ) ) |
| 17 | simp21 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> P e. A ) |
|
| 18 | 8 3 | atbase | |- ( P e. A -> P e. ( Base ` K ) ) |
| 19 | 17 18 | syl | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> P e. ( Base ` K ) ) |
| 20 | 8 2 | latjcom | |- ( ( K e. Lat /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( P .\/ R ) = ( R .\/ P ) ) |
| 21 | 6 19 13 20 | syl3anc | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( P .\/ R ) = ( R .\/ P ) ) |
| 22 | 21 15 | eqeq12d | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( R .\/ P ) = ( R .\/ Q ) ) ) |
| 23 | 4 16 22 | 3bitr4d | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( P .<_ ( Q .\/ R ) <-> ( P .\/ R ) = ( Q .\/ R ) ) ) |