This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Atom exchange property. (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvlatexch.l | |- .<_ = ( le ` K ) |
|
| cvlatexch.j | |- .\/ = ( join ` K ) |
||
| cvlatexch.a | |- A = ( Atoms ` K ) |
||
| Assertion | cvlatexch1 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( P .<_ ( R .\/ Q ) -> Q .<_ ( R .\/ P ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvlatexch.l | |- .<_ = ( le ` K ) |
|
| 2 | cvlatexch.j | |- .\/ = ( join ` K ) |
|
| 3 | cvlatexch.a | |- A = ( Atoms ` K ) |
|
| 4 | 1 2 3 | cvlatexchb1 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( P .<_ ( R .\/ Q ) <-> ( R .\/ P ) = ( R .\/ Q ) ) ) |
| 5 | cvllat | |- ( K e. CvLat -> K e. Lat ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> K e. Lat ) |
| 7 | simp23 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> R e. A ) |
|
| 8 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 9 | 8 3 | atbase | |- ( R e. A -> R e. ( Base ` K ) ) |
| 10 | 7 9 | syl | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> R e. ( Base ` K ) ) |
| 11 | simp22 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> Q e. A ) |
|
| 12 | 8 3 | atbase | |- ( Q e. A -> Q e. ( Base ` K ) ) |
| 13 | 11 12 | syl | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> Q e. ( Base ` K ) ) |
| 14 | 8 1 2 | latlej2 | |- ( ( K e. Lat /\ R e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> Q .<_ ( R .\/ Q ) ) |
| 15 | 6 10 13 14 | syl3anc | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> Q .<_ ( R .\/ Q ) ) |
| 16 | breq2 | |- ( ( R .\/ P ) = ( R .\/ Q ) -> ( Q .<_ ( R .\/ P ) <-> Q .<_ ( R .\/ Q ) ) ) |
|
| 17 | 15 16 | syl5ibrcom | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( ( R .\/ P ) = ( R .\/ Q ) -> Q .<_ ( R .\/ P ) ) ) |
| 18 | 4 17 | sylbid | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( P .<_ ( R .\/ Q ) -> Q .<_ ( R .\/ P ) ) ) |