This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem cvllat

Description: An atomic lattice with the covering property is a lattice. (Contributed by NM, 5-Nov-2012)

Ref Expression
Assertion cvllat
|- ( K e. CvLat -> K e. Lat )

Proof

Step Hyp Ref Expression
1 cvlatl
 |-  ( K e. CvLat -> K e. AtLat )
2 atllat
 |-  ( K e. AtLat -> K e. Lat )
3 1 2 syl
 |-  ( K e. CvLat -> K e. Lat )