This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of cvlexchb1 for atoms. (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvlatexch.l | |- .<_ = ( le ` K ) |
|
| cvlatexch.j | |- .\/ = ( join ` K ) |
||
| cvlatexch.a | |- A = ( Atoms ` K ) |
||
| Assertion | cvlatexchb1 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( P .<_ ( R .\/ Q ) <-> ( R .\/ P ) = ( R .\/ Q ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvlatexch.l | |- .<_ = ( le ` K ) |
|
| 2 | cvlatexch.j | |- .\/ = ( join ` K ) |
|
| 3 | cvlatexch.a | |- A = ( Atoms ` K ) |
|
| 4 | cvlatl | |- ( K e. CvLat -> K e. AtLat ) |
|
| 5 | 4 | adantr | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> K e. AtLat ) |
| 6 | simpr1 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> P e. A ) |
|
| 7 | simpr3 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> R e. A ) |
|
| 8 | 1 3 | atncmp | |- ( ( K e. AtLat /\ P e. A /\ R e. A ) -> ( -. P .<_ R <-> P =/= R ) ) |
| 9 | 5 6 7 8 | syl3anc | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( -. P .<_ R <-> P =/= R ) ) |
| 10 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 11 | 10 3 | atbase | |- ( R e. A -> R e. ( Base ` K ) ) |
| 12 | 10 1 2 3 | cvlexchb1 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. ( Base ` K ) ) /\ -. P .<_ R ) -> ( P .<_ ( R .\/ Q ) <-> ( R .\/ P ) = ( R .\/ Q ) ) ) |
| 13 | 12 | 3expia | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. ( Base ` K ) ) ) -> ( -. P .<_ R -> ( P .<_ ( R .\/ Q ) <-> ( R .\/ P ) = ( R .\/ Q ) ) ) ) |
| 14 | 11 13 | syl3anr3 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( -. P .<_ R -> ( P .<_ ( R .\/ Q ) <-> ( R .\/ P ) = ( R .\/ Q ) ) ) ) |
| 15 | 9 14 | sylbird | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( P =/= R -> ( P .<_ ( R .\/ Q ) <-> ( R .\/ P ) = ( R .\/ Q ) ) ) ) |
| 16 | 15 | 3impia | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( P .<_ ( R .\/ Q ) <-> ( R .\/ P ) = ( R .\/ Q ) ) ) |