This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjth | |- ( A e. CC -> ( ( A + ( * ` A ) ) e. RR /\ ( _i x. ( A - ( * ` A ) ) ) e. RR ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cju | |- ( A e. CC -> E! x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) |
|
| 2 | riotasbc | |- ( E! x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) -> [. ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) |
|
| 3 | 1 2 | syl | |- ( A e. CC -> [. ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) |
| 4 | cjval | |- ( A e. CC -> ( * ` A ) = ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) ) |
|
| 5 | 4 | sbceq1d | |- ( A e. CC -> ( [. ( * ` A ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> [. ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) ) |
| 6 | 3 5 | mpbird | |- ( A e. CC -> [. ( * ` A ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) |
| 7 | fvex | |- ( * ` A ) e. _V |
|
| 8 | oveq2 | |- ( x = ( * ` A ) -> ( A + x ) = ( A + ( * ` A ) ) ) |
|
| 9 | 8 | eleq1d | |- ( x = ( * ` A ) -> ( ( A + x ) e. RR <-> ( A + ( * ` A ) ) e. RR ) ) |
| 10 | oveq2 | |- ( x = ( * ` A ) -> ( A - x ) = ( A - ( * ` A ) ) ) |
|
| 11 | 10 | oveq2d | |- ( x = ( * ` A ) -> ( _i x. ( A - x ) ) = ( _i x. ( A - ( * ` A ) ) ) ) |
| 12 | 11 | eleq1d | |- ( x = ( * ` A ) -> ( ( _i x. ( A - x ) ) e. RR <-> ( _i x. ( A - ( * ` A ) ) ) e. RR ) ) |
| 13 | 9 12 | anbi12d | |- ( x = ( * ` A ) -> ( ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> ( ( A + ( * ` A ) ) e. RR /\ ( _i x. ( A - ( * ` A ) ) ) e. RR ) ) ) |
| 14 | 7 13 | sbcie | |- ( [. ( * ` A ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> ( ( A + ( * ` A ) ) e. RR /\ ( _i x. ( A - ( * ` A ) ) ) e. RR ) ) |
| 15 | 6 14 | sylib | |- ( A e. CC -> ( ( A + ( * ` A ) ) e. RR /\ ( _i x. ( A - ( * ` A ) ) ) e. RR ) ) |