This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A divisor of a unit is a unit. (Contributed by Mario Carneiro, 18-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsunit.1 | |- U = ( Unit ` R ) |
|
| dvdsunit.3 | |- .|| = ( ||r ` R ) |
||
| Assertion | dvdsunit | |- ( ( R e. CRing /\ Y .|| X /\ X e. U ) -> Y e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsunit.1 | |- U = ( Unit ` R ) |
|
| 2 | dvdsunit.3 | |- .|| = ( ||r ` R ) |
|
| 3 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 4 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 5 | 4 2 | dvdsrtr | |- ( ( R e. Ring /\ Y .|| X /\ X .|| ( 1r ` R ) ) -> Y .|| ( 1r ` R ) ) |
| 6 | 5 | 3expia | |- ( ( R e. Ring /\ Y .|| X ) -> ( X .|| ( 1r ` R ) -> Y .|| ( 1r ` R ) ) ) |
| 7 | 3 6 | sylan | |- ( ( R e. CRing /\ Y .|| X ) -> ( X .|| ( 1r ` R ) -> Y .|| ( 1r ` R ) ) ) |
| 8 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 9 | 1 8 2 | crngunit | |- ( R e. CRing -> ( X e. U <-> X .|| ( 1r ` R ) ) ) |
| 10 | 9 | adantr | |- ( ( R e. CRing /\ Y .|| X ) -> ( X e. U <-> X .|| ( 1r ` R ) ) ) |
| 11 | 1 8 2 | crngunit | |- ( R e. CRing -> ( Y e. U <-> Y .|| ( 1r ` R ) ) ) |
| 12 | 11 | adantr | |- ( ( R e. CRing /\ Y .|| X ) -> ( Y e. U <-> Y .|| ( 1r ` R ) ) ) |
| 13 | 7 10 12 | 3imtr4d | |- ( ( R e. CRing /\ Y .|| X ) -> ( X e. U -> Y e. U ) ) |
| 14 | 13 | 3impia | |- ( ( R e. CRing /\ Y .|| X /\ X e. U ) -> Y e. U ) |