This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| ablpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| ablpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| Assertion | cmnpropd | |- ( ph -> ( K e. CMnd <-> L e. CMnd ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | ablpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | ablpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 4 | 1 2 3 | mndpropd | |- ( ph -> ( K e. Mnd <-> L e. Mnd ) ) |
| 5 | 3 | oveqrspc2v | |- ( ( ph /\ ( u e. B /\ v e. B ) ) -> ( u ( +g ` K ) v ) = ( u ( +g ` L ) v ) ) |
| 6 | 3 | oveqrspc2v | |- ( ( ph /\ ( v e. B /\ u e. B ) ) -> ( v ( +g ` K ) u ) = ( v ( +g ` L ) u ) ) |
| 7 | 6 | ancom2s | |- ( ( ph /\ ( u e. B /\ v e. B ) ) -> ( v ( +g ` K ) u ) = ( v ( +g ` L ) u ) ) |
| 8 | 5 7 | eqeq12d | |- ( ( ph /\ ( u e. B /\ v e. B ) ) -> ( ( u ( +g ` K ) v ) = ( v ( +g ` K ) u ) <-> ( u ( +g ` L ) v ) = ( v ( +g ` L ) u ) ) ) |
| 9 | 8 | 2ralbidva | |- ( ph -> ( A. u e. B A. v e. B ( u ( +g ` K ) v ) = ( v ( +g ` K ) u ) <-> A. u e. B A. v e. B ( u ( +g ` L ) v ) = ( v ( +g ` L ) u ) ) ) |
| 10 | 1 | raleqdv | |- ( ph -> ( A. v e. B ( u ( +g ` K ) v ) = ( v ( +g ` K ) u ) <-> A. v e. ( Base ` K ) ( u ( +g ` K ) v ) = ( v ( +g ` K ) u ) ) ) |
| 11 | 1 10 | raleqbidv | |- ( ph -> ( A. u e. B A. v e. B ( u ( +g ` K ) v ) = ( v ( +g ` K ) u ) <-> A. u e. ( Base ` K ) A. v e. ( Base ` K ) ( u ( +g ` K ) v ) = ( v ( +g ` K ) u ) ) ) |
| 12 | 2 | raleqdv | |- ( ph -> ( A. v e. B ( u ( +g ` L ) v ) = ( v ( +g ` L ) u ) <-> A. v e. ( Base ` L ) ( u ( +g ` L ) v ) = ( v ( +g ` L ) u ) ) ) |
| 13 | 2 12 | raleqbidv | |- ( ph -> ( A. u e. B A. v e. B ( u ( +g ` L ) v ) = ( v ( +g ` L ) u ) <-> A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( u ( +g ` L ) v ) = ( v ( +g ` L ) u ) ) ) |
| 14 | 9 11 13 | 3bitr3d | |- ( ph -> ( A. u e. ( Base ` K ) A. v e. ( Base ` K ) ( u ( +g ` K ) v ) = ( v ( +g ` K ) u ) <-> A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( u ( +g ` L ) v ) = ( v ( +g ` L ) u ) ) ) |
| 15 | 4 14 | anbi12d | |- ( ph -> ( ( K e. Mnd /\ A. u e. ( Base ` K ) A. v e. ( Base ` K ) ( u ( +g ` K ) v ) = ( v ( +g ` K ) u ) ) <-> ( L e. Mnd /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( u ( +g ` L ) v ) = ( v ( +g ` L ) u ) ) ) ) |
| 16 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 17 | eqid | |- ( +g ` K ) = ( +g ` K ) |
|
| 18 | 16 17 | iscmn | |- ( K e. CMnd <-> ( K e. Mnd /\ A. u e. ( Base ` K ) A. v e. ( Base ` K ) ( u ( +g ` K ) v ) = ( v ( +g ` K ) u ) ) ) |
| 19 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 20 | eqid | |- ( +g ` L ) = ( +g ` L ) |
|
| 21 | 19 20 | iscmn | |- ( L e. CMnd <-> ( L e. Mnd /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( u ( +g ` L ) v ) = ( v ( +g ` L ) u ) ) ) |
| 22 | 15 18 21 | 3bitr4g | |- ( ph -> ( K e. CMnd <-> L e. CMnd ) ) |