This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of Jech p. 72, contains at least one representative with the property, if there is one. In other words, the collection is empty iff no set has the property (i.e. A is empty). (Contributed by NM, 15-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | scott0 | |- ( A = (/) <-> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq | |- ( A = (/) -> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = { x e. (/) | A. y e. A ( rank ` x ) C_ ( rank ` y ) } ) |
|
| 2 | rab0 | |- { x e. (/) | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) |
|
| 3 | 1 2 | eqtrdi | |- ( A = (/) -> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) ) |
| 4 | n0 | |- ( A =/= (/) <-> E. x x e. A ) |
|
| 5 | nfre1 | |- F/ x E. x e. A ( rank ` x ) = ( rank ` x ) |
|
| 6 | eqid | |- ( rank ` x ) = ( rank ` x ) |
|
| 7 | rspe | |- ( ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) -> E. x e. A ( rank ` x ) = ( rank ` x ) ) |
|
| 8 | 6 7 | mpan2 | |- ( x e. A -> E. x e. A ( rank ` x ) = ( rank ` x ) ) |
| 9 | 5 8 | exlimi | |- ( E. x x e. A -> E. x e. A ( rank ` x ) = ( rank ` x ) ) |
| 10 | 4 9 | sylbi | |- ( A =/= (/) -> E. x e. A ( rank ` x ) = ( rank ` x ) ) |
| 11 | fvex | |- ( rank ` x ) e. _V |
|
| 12 | eqeq1 | |- ( y = ( rank ` x ) -> ( y = ( rank ` x ) <-> ( rank ` x ) = ( rank ` x ) ) ) |
|
| 13 | 12 | anbi2d | |- ( y = ( rank ` x ) -> ( ( x e. A /\ y = ( rank ` x ) ) <-> ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) ) ) |
| 14 | 11 13 | spcev | |- ( ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) -> E. y ( x e. A /\ y = ( rank ` x ) ) ) |
| 15 | 14 | eximi | |- ( E. x ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) -> E. x E. y ( x e. A /\ y = ( rank ` x ) ) ) |
| 16 | excom | |- ( E. y E. x ( x e. A /\ y = ( rank ` x ) ) <-> E. x E. y ( x e. A /\ y = ( rank ` x ) ) ) |
|
| 17 | 15 16 | sylibr | |- ( E. x ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) -> E. y E. x ( x e. A /\ y = ( rank ` x ) ) ) |
| 18 | df-rex | |- ( E. x e. A ( rank ` x ) = ( rank ` x ) <-> E. x ( x e. A /\ ( rank ` x ) = ( rank ` x ) ) ) |
|
| 19 | df-rex | |- ( E. x e. A y = ( rank ` x ) <-> E. x ( x e. A /\ y = ( rank ` x ) ) ) |
|
| 20 | 19 | exbii | |- ( E. y E. x e. A y = ( rank ` x ) <-> E. y E. x ( x e. A /\ y = ( rank ` x ) ) ) |
| 21 | 17 18 20 | 3imtr4i | |- ( E. x e. A ( rank ` x ) = ( rank ` x ) -> E. y E. x e. A y = ( rank ` x ) ) |
| 22 | 10 21 | syl | |- ( A =/= (/) -> E. y E. x e. A y = ( rank ` x ) ) |
| 23 | abn0 | |- ( { y | E. x e. A y = ( rank ` x ) } =/= (/) <-> E. y E. x e. A y = ( rank ` x ) ) |
|
| 24 | 22 23 | sylibr | |- ( A =/= (/) -> { y | E. x e. A y = ( rank ` x ) } =/= (/) ) |
| 25 | 11 | dfiin2 | |- |^|_ x e. A ( rank ` x ) = |^| { y | E. x e. A y = ( rank ` x ) } |
| 26 | rankon | |- ( rank ` x ) e. On |
|
| 27 | eleq1 | |- ( y = ( rank ` x ) -> ( y e. On <-> ( rank ` x ) e. On ) ) |
|
| 28 | 26 27 | mpbiri | |- ( y = ( rank ` x ) -> y e. On ) |
| 29 | 28 | rexlimivw | |- ( E. x e. A y = ( rank ` x ) -> y e. On ) |
| 30 | 29 | abssi | |- { y | E. x e. A y = ( rank ` x ) } C_ On |
| 31 | onint | |- ( ( { y | E. x e. A y = ( rank ` x ) } C_ On /\ { y | E. x e. A y = ( rank ` x ) } =/= (/) ) -> |^| { y | E. x e. A y = ( rank ` x ) } e. { y | E. x e. A y = ( rank ` x ) } ) |
|
| 32 | 30 31 | mpan | |- ( { y | E. x e. A y = ( rank ` x ) } =/= (/) -> |^| { y | E. x e. A y = ( rank ` x ) } e. { y | E. x e. A y = ( rank ` x ) } ) |
| 33 | 25 32 | eqeltrid | |- ( { y | E. x e. A y = ( rank ` x ) } =/= (/) -> |^|_ x e. A ( rank ` x ) e. { y | E. x e. A y = ( rank ` x ) } ) |
| 34 | nfii1 | |- F/_ x |^|_ x e. A ( rank ` x ) |
|
| 35 | 34 | nfeq2 | |- F/ x y = |^|_ x e. A ( rank ` x ) |
| 36 | eqeq1 | |- ( y = |^|_ x e. A ( rank ` x ) -> ( y = ( rank ` x ) <-> |^|_ x e. A ( rank ` x ) = ( rank ` x ) ) ) |
|
| 37 | 35 36 | rexbid | |- ( y = |^|_ x e. A ( rank ` x ) -> ( E. x e. A y = ( rank ` x ) <-> E. x e. A |^|_ x e. A ( rank ` x ) = ( rank ` x ) ) ) |
| 38 | 37 | elabg | |- ( |^|_ x e. A ( rank ` x ) e. { y | E. x e. A y = ( rank ` x ) } -> ( |^|_ x e. A ( rank ` x ) e. { y | E. x e. A y = ( rank ` x ) } <-> E. x e. A |^|_ x e. A ( rank ` x ) = ( rank ` x ) ) ) |
| 39 | 38 | ibi | |- ( |^|_ x e. A ( rank ` x ) e. { y | E. x e. A y = ( rank ` x ) } -> E. x e. A |^|_ x e. A ( rank ` x ) = ( rank ` x ) ) |
| 40 | ssid | |- ( rank ` y ) C_ ( rank ` y ) |
|
| 41 | fveq2 | |- ( x = y -> ( rank ` x ) = ( rank ` y ) ) |
|
| 42 | 41 | sseq1d | |- ( x = y -> ( ( rank ` x ) C_ ( rank ` y ) <-> ( rank ` y ) C_ ( rank ` y ) ) ) |
| 43 | 42 | rspcev | |- ( ( y e. A /\ ( rank ` y ) C_ ( rank ` y ) ) -> E. x e. A ( rank ` x ) C_ ( rank ` y ) ) |
| 44 | 40 43 | mpan2 | |- ( y e. A -> E. x e. A ( rank ` x ) C_ ( rank ` y ) ) |
| 45 | iinss | |- ( E. x e. A ( rank ` x ) C_ ( rank ` y ) -> |^|_ x e. A ( rank ` x ) C_ ( rank ` y ) ) |
|
| 46 | 44 45 | syl | |- ( y e. A -> |^|_ x e. A ( rank ` x ) C_ ( rank ` y ) ) |
| 47 | sseq1 | |- ( |^|_ x e. A ( rank ` x ) = ( rank ` x ) -> ( |^|_ x e. A ( rank ` x ) C_ ( rank ` y ) <-> ( rank ` x ) C_ ( rank ` y ) ) ) |
|
| 48 | 46 47 | imbitrid | |- ( |^|_ x e. A ( rank ` x ) = ( rank ` x ) -> ( y e. A -> ( rank ` x ) C_ ( rank ` y ) ) ) |
| 49 | 48 | ralrimiv | |- ( |^|_ x e. A ( rank ` x ) = ( rank ` x ) -> A. y e. A ( rank ` x ) C_ ( rank ` y ) ) |
| 50 | 49 | reximi | |- ( E. x e. A |^|_ x e. A ( rank ` x ) = ( rank ` x ) -> E. x e. A A. y e. A ( rank ` x ) C_ ( rank ` y ) ) |
| 51 | 24 33 39 50 | 4syl | |- ( A =/= (/) -> E. x e. A A. y e. A ( rank ` x ) C_ ( rank ` y ) ) |
| 52 | rabn0 | |- ( { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } =/= (/) <-> E. x e. A A. y e. A ( rank ` x ) C_ ( rank ` y ) ) |
|
| 53 | 51 52 | sylibr | |- ( A =/= (/) -> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } =/= (/) ) |
| 54 | 53 | necon4i | |- ( { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) -> A = (/) ) |
| 55 | 3 54 | impbii | |- ( A = (/) <-> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) ) |