This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with the identity relation. Part of Theorem 3.7(i) of Monk1 p. 36. (Contributed by NM, 22-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coi2 | |- ( Rel A -> ( _I o. A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel2 | |- ( Rel A <-> `' `' A = A ) |
|
| 2 | cnvco | |- `' ( `' A o. _I ) = ( `' _I o. `' `' A ) |
|
| 3 | relcnv | |- Rel `' A |
|
| 4 | coi1 | |- ( Rel `' A -> ( `' A o. _I ) = `' A ) |
|
| 5 | 3 4 | ax-mp | |- ( `' A o. _I ) = `' A |
| 6 | 5 | cnveqi | |- `' ( `' A o. _I ) = `' `' A |
| 7 | 2 6 | eqtr3i | |- ( `' _I o. `' `' A ) = `' `' A |
| 8 | cnvi | |- `' _I = _I |
|
| 9 | coeq2 | |- ( `' `' A = A -> ( `' _I o. `' `' A ) = ( `' _I o. A ) ) |
|
| 10 | coeq1 | |- ( `' _I = _I -> ( `' _I o. A ) = ( _I o. A ) ) |
|
| 11 | 9 10 | sylan9eq | |- ( ( `' `' A = A /\ `' _I = _I ) -> ( `' _I o. `' `' A ) = ( _I o. A ) ) |
| 12 | 8 11 | mpan2 | |- ( `' `' A = A -> ( `' _I o. `' `' A ) = ( _I o. A ) ) |
| 13 | id | |- ( `' `' A = A -> `' `' A = A ) |
|
| 14 | 7 12 13 | 3eqtr3a | |- ( `' `' A = A -> ( _I o. A ) = A ) |
| 15 | 1 14 | sylbi | |- ( Rel A -> ( _I o. A ) = A ) |