This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with the identity relation. Part of Theorem 3.7(i) of Monk1 p. 36. (Contributed by NM, 22-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coi2 | ⊢ ( Rel 𝐴 → ( I ∘ 𝐴 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel2 | ⊢ ( Rel 𝐴 ↔ ◡ ◡ 𝐴 = 𝐴 ) | |
| 2 | cnvco | ⊢ ◡ ( ◡ 𝐴 ∘ I ) = ( ◡ I ∘ ◡ ◡ 𝐴 ) | |
| 3 | relcnv | ⊢ Rel ◡ 𝐴 | |
| 4 | coi1 | ⊢ ( Rel ◡ 𝐴 → ( ◡ 𝐴 ∘ I ) = ◡ 𝐴 ) | |
| 5 | 3 4 | ax-mp | ⊢ ( ◡ 𝐴 ∘ I ) = ◡ 𝐴 |
| 6 | 5 | cnveqi | ⊢ ◡ ( ◡ 𝐴 ∘ I ) = ◡ ◡ 𝐴 |
| 7 | 2 6 | eqtr3i | ⊢ ( ◡ I ∘ ◡ ◡ 𝐴 ) = ◡ ◡ 𝐴 |
| 8 | cnvi | ⊢ ◡ I = I | |
| 9 | coeq2 | ⊢ ( ◡ ◡ 𝐴 = 𝐴 → ( ◡ I ∘ ◡ ◡ 𝐴 ) = ( ◡ I ∘ 𝐴 ) ) | |
| 10 | coeq1 | ⊢ ( ◡ I = I → ( ◡ I ∘ 𝐴 ) = ( I ∘ 𝐴 ) ) | |
| 11 | 9 10 | sylan9eq | ⊢ ( ( ◡ ◡ 𝐴 = 𝐴 ∧ ◡ I = I ) → ( ◡ I ∘ ◡ ◡ 𝐴 ) = ( I ∘ 𝐴 ) ) |
| 12 | 8 11 | mpan2 | ⊢ ( ◡ ◡ 𝐴 = 𝐴 → ( ◡ I ∘ ◡ ◡ 𝐴 ) = ( I ∘ 𝐴 ) ) |
| 13 | id | ⊢ ( ◡ ◡ 𝐴 = 𝐴 → ◡ ◡ 𝐴 = 𝐴 ) | |
| 14 | 7 12 13 | 3eqtr3a | ⊢ ( ◡ ◡ 𝐴 = 𝐴 → ( I ∘ 𝐴 ) = 𝐴 ) |
| 15 | 1 14 | sylbi | ⊢ ( Rel 𝐴 → ( I ∘ 𝐴 ) = 𝐴 ) |