This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with the identity relation. Part of Theorem 3.7(i) of Monk1 p. 36. (Contributed by NM, 22-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coi2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel2 | ||
| 2 | cnvco | ||
| 3 | relcnv | ||
| 4 | coi1 | ||
| 5 | 3 4 | ax-mp | |
| 6 | 5 | cnveqi | |
| 7 | 2 6 | eqtr3i | |
| 8 | cnvi | ||
| 9 | coeq2 | ||
| 10 | coeq1 | ||
| 11 | 9 10 | sylan9eq | |
| 12 | 8 11 | mpan2 | |
| 13 | id | ||
| 14 | 7 12 13 | 3eqtr3a | |
| 15 | 1 14 | sylbi |