This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity functor is a right identity for composition. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofulid.g | |- ( ph -> F e. ( C Func D ) ) |
|
| cofurid.1 | |- I = ( idFunc ` C ) |
||
| Assertion | cofurid | |- ( ph -> ( F o.func I ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofulid.g | |- ( ph -> F e. ( C Func D ) ) |
|
| 2 | cofurid.1 | |- I = ( idFunc ` C ) |
|
| 3 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 4 | funcrcl | |- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 5 | 1 4 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 6 | 5 | simpld | |- ( ph -> C e. Cat ) |
| 7 | 2 3 6 | idfu1st | |- ( ph -> ( 1st ` I ) = ( _I |` ( Base ` C ) ) ) |
| 8 | 7 | coeq2d | |- ( ph -> ( ( 1st ` F ) o. ( 1st ` I ) ) = ( ( 1st ` F ) o. ( _I |` ( Base ` C ) ) ) ) |
| 9 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 10 | relfunc | |- Rel ( C Func D ) |
|
| 11 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 12 | 10 1 11 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 13 | 3 9 12 | funcf1 | |- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 14 | fcoi1 | |- ( ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) -> ( ( 1st ` F ) o. ( _I |` ( Base ` C ) ) ) = ( 1st ` F ) ) |
|
| 15 | 13 14 | syl | |- ( ph -> ( ( 1st ` F ) o. ( _I |` ( Base ` C ) ) ) = ( 1st ` F ) ) |
| 16 | 8 15 | eqtrd | |- ( ph -> ( ( 1st ` F ) o. ( 1st ` I ) ) = ( 1st ` F ) ) |
| 17 | 7 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( 1st ` I ) = ( _I |` ( Base ` C ) ) ) |
| 18 | 17 | fveq1d | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( 1st ` I ) ` x ) = ( ( _I |` ( Base ` C ) ) ` x ) ) |
| 19 | fvresi | |- ( x e. ( Base ` C ) -> ( ( _I |` ( Base ` C ) ) ` x ) = x ) |
|
| 20 | 19 | 3ad2ant2 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( _I |` ( Base ` C ) ) ` x ) = x ) |
| 21 | 18 20 | eqtrd | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( 1st ` I ) ` x ) = x ) |
| 22 | 17 | fveq1d | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( 1st ` I ) ` y ) = ( ( _I |` ( Base ` C ) ) ` y ) ) |
| 23 | fvresi | |- ( y e. ( Base ` C ) -> ( ( _I |` ( Base ` C ) ) ` y ) = y ) |
|
| 24 | 23 | 3ad2ant3 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( _I |` ( Base ` C ) ) ` y ) = y ) |
| 25 | 22 24 | eqtrd | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( 1st ` I ) ` y ) = y ) |
| 26 | 21 25 | oveq12d | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( 1st ` I ) ` x ) ( 2nd ` F ) ( ( 1st ` I ) ` y ) ) = ( x ( 2nd ` F ) y ) ) |
| 27 | 6 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> C e. Cat ) |
| 28 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 29 | simp2 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
|
| 30 | simp3 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> y e. ( Base ` C ) ) |
|
| 31 | 2 3 27 28 29 30 | idfu2nd | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( x ( 2nd ` I ) y ) = ( _I |` ( x ( Hom ` C ) y ) ) ) |
| 32 | 26 31 | coeq12d | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( ( 1st ` I ) ` x ) ( 2nd ` F ) ( ( 1st ` I ) ` y ) ) o. ( x ( 2nd ` I ) y ) ) = ( ( x ( 2nd ` F ) y ) o. ( _I |` ( x ( Hom ` C ) y ) ) ) ) |
| 33 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 34 | 12 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 35 | 3 28 33 34 29 30 | funcf2 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 36 | fcoi1 | |- ( ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) -> ( ( x ( 2nd ` F ) y ) o. ( _I |` ( x ( Hom ` C ) y ) ) ) = ( x ( 2nd ` F ) y ) ) |
|
| 37 | 35 36 | syl | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( x ( 2nd ` F ) y ) o. ( _I |` ( x ( Hom ` C ) y ) ) ) = ( x ( 2nd ` F ) y ) ) |
| 38 | 32 37 | eqtrd | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( ( 1st ` I ) ` x ) ( 2nd ` F ) ( ( 1st ` I ) ` y ) ) o. ( x ( 2nd ` I ) y ) ) = ( x ( 2nd ` F ) y ) ) |
| 39 | 38 | mpoeq3dva | |- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` I ) ` x ) ( 2nd ` F ) ( ( 1st ` I ) ` y ) ) o. ( x ( 2nd ` I ) y ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
| 40 | 3 12 | funcfn2 | |- ( ph -> ( 2nd ` F ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 41 | fnov | |- ( ( 2nd ` F ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( 2nd ` F ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
|
| 42 | 40 41 | sylib | |- ( ph -> ( 2nd ` F ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
| 43 | 39 42 | eqtr4d | |- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` I ) ` x ) ( 2nd ` F ) ( ( 1st ` I ) ` y ) ) o. ( x ( 2nd ` I ) y ) ) ) = ( 2nd ` F ) ) |
| 44 | 16 43 | opeq12d | |- ( ph -> <. ( ( 1st ` F ) o. ( 1st ` I ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` I ) ` x ) ( 2nd ` F ) ( ( 1st ` I ) ` y ) ) o. ( x ( 2nd ` I ) y ) ) ) >. = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 45 | 2 | idfucl | |- ( C e. Cat -> I e. ( C Func C ) ) |
| 46 | 6 45 | syl | |- ( ph -> I e. ( C Func C ) ) |
| 47 | 3 46 1 | cofuval | |- ( ph -> ( F o.func I ) = <. ( ( 1st ` F ) o. ( 1st ` I ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` I ) ` x ) ( 2nd ` F ) ( ( 1st ` I ) ` y ) ) o. ( x ( 2nd ` I ) y ) ) ) >. ) |
| 48 | 1st2nd | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
|
| 49 | 10 1 48 | sylancr | |- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 50 | 44 47 49 | 3eqtr4d | |- ( ph -> ( F o.func I ) = F ) |