This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The center of a group is a normal subgroup. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cntrnsg.z | |- Z = ( Cntr ` M ) |
|
| Assertion | cntrnsg | |- ( M e. Grp -> Z e. ( NrmSGrp ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntrnsg.z | |- Z = ( Cntr ` M ) |
|
| 2 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 3 | eqid | |- ( Cntz ` M ) = ( Cntz ` M ) |
|
| 4 | 2 3 | cntrval | |- ( ( Cntz ` M ) ` ( Base ` M ) ) = ( Cntr ` M ) |
| 5 | 1 4 | eqtr4i | |- Z = ( ( Cntz ` M ) ` ( Base ` M ) ) |
| 6 | ssid | |- ( Base ` M ) C_ ( Base ` M ) |
|
| 7 | 2 3 | cntzsubg | |- ( ( M e. Grp /\ ( Base ` M ) C_ ( Base ` M ) ) -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubGrp ` M ) ) |
| 8 | 6 7 | mpan2 | |- ( M e. Grp -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubGrp ` M ) ) |
| 9 | 5 8 | eqeltrid | |- ( M e. Grp -> Z e. ( SubGrp ` M ) ) |
| 10 | ssid | |- Z C_ Z |
|
| 11 | 1 | cntrsubgnsg | |- ( ( Z e. ( SubGrp ` M ) /\ Z C_ Z ) -> Z e. ( NrmSGrp ` M ) ) |
| 12 | 9 10 11 | sylancl | |- ( M e. Grp -> Z e. ( NrmSGrp ` M ) ) |