This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | soeq1 | |- ( R = S -> ( R Or A <-> S Or A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poeq1 | |- ( R = S -> ( R Po A <-> S Po A ) ) |
|
| 2 | breq | |- ( R = S -> ( x R y <-> x S y ) ) |
|
| 3 | biidd | |- ( R = S -> ( x = y <-> x = y ) ) |
|
| 4 | breq | |- ( R = S -> ( y R x <-> y S x ) ) |
|
| 5 | 2 3 4 | 3orbi123d | |- ( R = S -> ( ( x R y \/ x = y \/ y R x ) <-> ( x S y \/ x = y \/ y S x ) ) ) |
| 6 | 5 | 2ralbidv | |- ( R = S -> ( A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) <-> A. x e. A A. y e. A ( x S y \/ x = y \/ y S x ) ) ) |
| 7 | 1 6 | anbi12d | |- ( R = S -> ( ( R Po A /\ A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) <-> ( S Po A /\ A. x e. A A. y e. A ( x S y \/ x = y \/ y S x ) ) ) ) |
| 8 | df-so | |- ( R Or A <-> ( R Po A /\ A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) ) |
|
| 9 | df-so | |- ( S Or A <-> ( S Po A /\ A. x e. A A. y e. A ( x S y \/ x = y \/ y S x ) ) ) |
|
| 10 | 7 8 9 | 3bitr4g | |- ( R = S -> ( R Or A <-> S Or A ) ) |