This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every continuous linear operator has a unique adjoint. Theorem 3.10 of Beran p. 104. (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnlnadjeu | |- ( T e. ( LinOp i^i ContOp ) -> E! t e. ( LinOp i^i ContOp ) A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = ( x .ih ( t ` y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | |- ( T = if ( T e. ( LinOp i^i ContOp ) , T , 0hop ) -> ( T ` x ) = ( if ( T e. ( LinOp i^i ContOp ) , T , 0hop ) ` x ) ) |
|
| 2 | 1 | oveq1d | |- ( T = if ( T e. ( LinOp i^i ContOp ) , T , 0hop ) -> ( ( T ` x ) .ih y ) = ( ( if ( T e. ( LinOp i^i ContOp ) , T , 0hop ) ` x ) .ih y ) ) |
| 3 | 2 | eqeq1d | |- ( T = if ( T e. ( LinOp i^i ContOp ) , T , 0hop ) -> ( ( ( T ` x ) .ih y ) = ( x .ih ( t ` y ) ) <-> ( ( if ( T e. ( LinOp i^i ContOp ) , T , 0hop ) ` x ) .ih y ) = ( x .ih ( t ` y ) ) ) ) |
| 4 | 3 | 2ralbidv | |- ( T = if ( T e. ( LinOp i^i ContOp ) , T , 0hop ) -> ( A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = ( x .ih ( t ` y ) ) <-> A. x e. ~H A. y e. ~H ( ( if ( T e. ( LinOp i^i ContOp ) , T , 0hop ) ` x ) .ih y ) = ( x .ih ( t ` y ) ) ) ) |
| 5 | 4 | reubidv | |- ( T = if ( T e. ( LinOp i^i ContOp ) , T , 0hop ) -> ( E! t e. ( LinOp i^i ContOp ) A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = ( x .ih ( t ` y ) ) <-> E! t e. ( LinOp i^i ContOp ) A. x e. ~H A. y e. ~H ( ( if ( T e. ( LinOp i^i ContOp ) , T , 0hop ) ` x ) .ih y ) = ( x .ih ( t ` y ) ) ) ) |
| 6 | inss1 | |- ( LinOp i^i ContOp ) C_ LinOp |
|
| 7 | 0lnop | |- 0hop e. LinOp |
|
| 8 | 0cnop | |- 0hop e. ContOp |
|
| 9 | elin | |- ( 0hop e. ( LinOp i^i ContOp ) <-> ( 0hop e. LinOp /\ 0hop e. ContOp ) ) |
|
| 10 | 7 8 9 | mpbir2an | |- 0hop e. ( LinOp i^i ContOp ) |
| 11 | 10 | elimel | |- if ( T e. ( LinOp i^i ContOp ) , T , 0hop ) e. ( LinOp i^i ContOp ) |
| 12 | 6 11 | sselii | |- if ( T e. ( LinOp i^i ContOp ) , T , 0hop ) e. LinOp |
| 13 | inss2 | |- ( LinOp i^i ContOp ) C_ ContOp |
|
| 14 | 13 11 | sselii | |- if ( T e. ( LinOp i^i ContOp ) , T , 0hop ) e. ContOp |
| 15 | 12 14 | cnlnadjeui | |- E! t e. ( LinOp i^i ContOp ) A. x e. ~H A. y e. ~H ( ( if ( T e. ( LinOp i^i ContOp ) , T , 0hop ) ` x ) .ih y ) = ( x .ih ( t ` y ) ) |
| 16 | 5 15 | dedth | |- ( T e. ( LinOp i^i ContOp ) -> E! t e. ( LinOp i^i ContOp ) A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = ( x .ih ( t ` y ) ) ) |