This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every continuous linear operator has a unique adjoint. Theorem 3.10 of Beran p. 104. (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnlnadjeu | ⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) → ∃! 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) → ( 𝑇 ‘ 𝑥 ) = ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ‘ 𝑥 ) ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 3 | 2 | eqeq1d | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ( ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) ) |
| 4 | 3 | 2ralbidv | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) ) |
| 5 | 4 | reubidv | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) → ( ∃! 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ∃! 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) ) |
| 6 | inss1 | ⊢ ( LinOp ∩ ContOp ) ⊆ LinOp | |
| 7 | 0lnop | ⊢ 0hop ∈ LinOp | |
| 8 | 0cnop | ⊢ 0hop ∈ ContOp | |
| 9 | elin | ⊢ ( 0hop ∈ ( LinOp ∩ ContOp ) ↔ ( 0hop ∈ LinOp ∧ 0hop ∈ ContOp ) ) | |
| 10 | 7 8 9 | mpbir2an | ⊢ 0hop ∈ ( LinOp ∩ ContOp ) |
| 11 | 10 | elimel | ⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ∈ ( LinOp ∩ ContOp ) |
| 12 | 6 11 | sselii | ⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ∈ LinOp |
| 13 | inss2 | ⊢ ( LinOp ∩ ContOp ) ⊆ ContOp | |
| 14 | 13 11 | sselii | ⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ∈ ContOp |
| 15 | 12 14 | cnlnadjeui | ⊢ ∃! 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , 0hop ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) |
| 16 | 5 15 | dedth | ⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) → ∃! 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) |