This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identically zero function is a continuous Hilbert space operator. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0cnop | |- 0hop e. ContOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ho0f | |- 0hop : ~H --> ~H |
|
| 2 | 1rp | |- 1 e. RR+ |
|
| 3 | ho0val | |- ( w e. ~H -> ( 0hop ` w ) = 0h ) |
|
| 4 | ho0val | |- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
|
| 5 | 3 4 | oveqan12rd | |- ( ( x e. ~H /\ w e. ~H ) -> ( ( 0hop ` w ) -h ( 0hop ` x ) ) = ( 0h -h 0h ) ) |
| 6 | 5 | adantlr | |- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( 0hop ` w ) -h ( 0hop ` x ) ) = ( 0h -h 0h ) ) |
| 7 | ax-hv0cl | |- 0h e. ~H |
|
| 8 | hvsubid | |- ( 0h e. ~H -> ( 0h -h 0h ) = 0h ) |
|
| 9 | 7 8 | ax-mp | |- ( 0h -h 0h ) = 0h |
| 10 | 6 9 | eqtrdi | |- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( 0hop ` w ) -h ( 0hop ` x ) ) = 0h ) |
| 11 | 10 | fveq2d | |- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) = ( normh ` 0h ) ) |
| 12 | norm0 | |- ( normh ` 0h ) = 0 |
|
| 13 | 11 12 | eqtrdi | |- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) = 0 ) |
| 14 | rpgt0 | |- ( y e. RR+ -> 0 < y ) |
|
| 15 | 14 | ad2antlr | |- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> 0 < y ) |
| 16 | 13 15 | eqbrtrd | |- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) |
| 17 | 16 | a1d | |- ( ( ( x e. ~H /\ y e. RR+ ) /\ w e. ~H ) -> ( ( normh ` ( w -h x ) ) < 1 -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) |
| 18 | 17 | ralrimiva | |- ( ( x e. ~H /\ y e. RR+ ) -> A. w e. ~H ( ( normh ` ( w -h x ) ) < 1 -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) |
| 19 | breq2 | |- ( z = 1 -> ( ( normh ` ( w -h x ) ) < z <-> ( normh ` ( w -h x ) ) < 1 ) ) |
|
| 20 | 19 | rspceaimv | |- ( ( 1 e. RR+ /\ A. w e. ~H ( ( normh ` ( w -h x ) ) < 1 -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) -> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) |
| 21 | 2 18 20 | sylancr | |- ( ( x e. ~H /\ y e. RR+ ) -> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) |
| 22 | 21 | rgen2 | |- A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) |
| 23 | elcnop | |- ( 0hop e. ContOp <-> ( 0hop : ~H --> ~H /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( 0hop ` w ) -h ( 0hop ` x ) ) ) < y ) ) ) |
|
| 24 | 1 22 23 | mpbir2an | |- 0hop e. ContOp |