This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function applying continuous extension to a given function f . (Contributed by Thierry Arnoux, 1-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnextval | |- ( ( J e. Top /\ K e. Top ) -> ( J CnExt K ) = ( f e. ( U. K ^pm U. J ) |-> U_ x e. ( ( cls ` J ) ` dom f ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq | |- ( j = J -> U. j = U. J ) |
|
| 2 | 1 | oveq2d | |- ( j = J -> ( U. k ^pm U. j ) = ( U. k ^pm U. J ) ) |
| 3 | fveq2 | |- ( j = J -> ( cls ` j ) = ( cls ` J ) ) |
|
| 4 | 3 | fveq1d | |- ( j = J -> ( ( cls ` j ) ` dom f ) = ( ( cls ` J ) ` dom f ) ) |
| 5 | fveq2 | |- ( j = J -> ( nei ` j ) = ( nei ` J ) ) |
|
| 6 | 5 | fveq1d | |- ( j = J -> ( ( nei ` j ) ` { x } ) = ( ( nei ` J ) ` { x } ) ) |
| 7 | 6 | oveq1d | |- ( j = J -> ( ( ( nei ` j ) ` { x } ) |`t dom f ) = ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) |
| 8 | 7 | oveq2d | |- ( j = J -> ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) = ( k fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ) |
| 9 | 8 | fveq1d | |- ( j = J -> ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) = ( ( k fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) |
| 10 | 9 | xpeq2d | |- ( j = J -> ( { x } X. ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) ) = ( { x } X. ( ( k fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) ) |
| 11 | 4 10 | iuneq12d | |- ( j = J -> U_ x e. ( ( cls ` j ) ` dom f ) ( { x } X. ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) ) = U_ x e. ( ( cls ` J ) ` dom f ) ( { x } X. ( ( k fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) ) |
| 12 | 2 11 | mpteq12dv | |- ( j = J -> ( f e. ( U. k ^pm U. j ) |-> U_ x e. ( ( cls ` j ) ` dom f ) ( { x } X. ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) ) ) = ( f e. ( U. k ^pm U. J ) |-> U_ x e. ( ( cls ` J ) ` dom f ) ( { x } X. ( ( k fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) ) ) |
| 13 | unieq | |- ( k = K -> U. k = U. K ) |
|
| 14 | 13 | oveq1d | |- ( k = K -> ( U. k ^pm U. J ) = ( U. K ^pm U. J ) ) |
| 15 | oveq1 | |- ( k = K -> ( k fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) = ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ) |
|
| 16 | 15 | fveq1d | |- ( k = K -> ( ( k fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) = ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) |
| 17 | 16 | xpeq2d | |- ( k = K -> ( { x } X. ( ( k fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) = ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) ) |
| 18 | 17 | iuneq2d | |- ( k = K -> U_ x e. ( ( cls ` J ) ` dom f ) ( { x } X. ( ( k fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) = U_ x e. ( ( cls ` J ) ` dom f ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) ) |
| 19 | 14 18 | mpteq12dv | |- ( k = K -> ( f e. ( U. k ^pm U. J ) |-> U_ x e. ( ( cls ` J ) ` dom f ) ( { x } X. ( ( k fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) ) = ( f e. ( U. K ^pm U. J ) |-> U_ x e. ( ( cls ` J ) ` dom f ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) ) ) |
| 20 | df-cnext | |- CnExt = ( j e. Top , k e. Top |-> ( f e. ( U. k ^pm U. j ) |-> U_ x e. ( ( cls ` j ) ` dom f ) ( { x } X. ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) ) ) ) |
|
| 21 | ovex | |- ( U. K ^pm U. J ) e. _V |
|
| 22 | 21 | mptex | |- ( f e. ( U. K ^pm U. J ) |-> U_ x e. ( ( cls ` J ) ` dom f ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) ) e. _V |
| 23 | 12 19 20 22 | ovmpo | |- ( ( J e. Top /\ K e. Top ) -> ( J CnExt K ) = ( f e. ( U. K ^pm U. J ) |-> U_ x e. ( ( cls ` J ) ` dom f ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) ) ) |