This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the continuous extension of a given function. (Contributed by Thierry Arnoux, 1-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cnext | |- CnExt = ( j e. Top , k e. Top |-> ( f e. ( U. k ^pm U. j ) |-> U_ x e. ( ( cls ` j ) ` dom f ) ( { x } X. ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccnext | |- CnExt |
|
| 1 | vj | |- j |
|
| 2 | ctop | |- Top |
|
| 3 | vk | |- k |
|
| 4 | vf | |- f |
|
| 5 | 3 | cv | |- k |
| 6 | 5 | cuni | |- U. k |
| 7 | cpm | |- ^pm |
|
| 8 | 1 | cv | |- j |
| 9 | 8 | cuni | |- U. j |
| 10 | 6 9 7 | co | |- ( U. k ^pm U. j ) |
| 11 | vx | |- x |
|
| 12 | ccl | |- cls |
|
| 13 | 8 12 | cfv | |- ( cls ` j ) |
| 14 | 4 | cv | |- f |
| 15 | 14 | cdm | |- dom f |
| 16 | 15 13 | cfv | |- ( ( cls ` j ) ` dom f ) |
| 17 | 11 | cv | |- x |
| 18 | 17 | csn | |- { x } |
| 19 | cflf | |- fLimf |
|
| 20 | cnei | |- nei |
|
| 21 | 8 20 | cfv | |- ( nei ` j ) |
| 22 | 18 21 | cfv | |- ( ( nei ` j ) ` { x } ) |
| 23 | crest | |- |`t |
|
| 24 | 22 15 23 | co | |- ( ( ( nei ` j ) ` { x } ) |`t dom f ) |
| 25 | 5 24 19 | co | |- ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) |
| 26 | 14 25 | cfv | |- ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) |
| 27 | 18 26 | cxp | |- ( { x } X. ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) ) |
| 28 | 11 16 27 | ciun | |- U_ x e. ( ( cls ` j ) ` dom f ) ( { x } X. ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) ) |
| 29 | 4 10 28 | cmpt | |- ( f e. ( U. k ^pm U. j ) |-> U_ x e. ( ( cls ` j ) ` dom f ) ( { x } X. ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) ) ) |
| 30 | 1 3 2 2 29 | cmpo | |- ( j e. Top , k e. Top |-> ( f e. ( U. k ^pm U. j ) |-> U_ x e. ( ( cls ` j ) ` dom f ) ( { x } X. ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) ) ) ) |
| 31 | 0 30 | wceq | |- CnExt = ( j e. Top , k e. Top |-> ( f e. ( U. k ^pm U. j ) |-> U_ x e. ( ( cls ` j ) ` dom f ) ( { x } X. ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) ) ) ) |