This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In the general case, a continuous extension is a relation. (Contributed by Thierry Arnoux, 20-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnextfrel.1 | |- C = U. J |
|
| cnextfrel.2 | |- B = U. K |
||
| Assertion | cnextrel | |- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ C ) ) -> Rel ( ( J CnExt K ) ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextfrel.1 | |- C = U. J |
|
| 2 | cnextfrel.2 | |- B = U. K |
|
| 3 | relxp | |- Rel ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
|
| 4 | 3 | rgenw | |- A. x e. ( ( cls ` J ) ` A ) Rel ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
| 5 | reliun | |- ( Rel U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> A. x e. ( ( cls ` J ) ` A ) Rel ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
|
| 6 | 4 5 | mpbir | |- Rel U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
| 7 | 1 2 | cnextfval | |- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ C ) ) -> ( ( J CnExt K ) ` F ) = U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 8 | 7 | releqd | |- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ C ) ) -> ( Rel ( ( J CnExt K ) ` F ) <-> Rel U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) ) |
| 9 | 6 8 | mpbiri | |- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ C ) ) -> Rel ( ( J CnExt K ) ` F ) ) |