This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex numbers are an Abelian group under addition. This version of cnaddabl shows the explicit structure "scaffold" we chose for the definition for Abelian groups. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use cnaddabl instead. (New usage is discouraged.) (Contributed by NM, 18-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnaddablx.g | |- G = { <. 1 , CC >. , <. 2 , + >. } |
|
| Assertion | cnaddablx | |- G e. Abel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnaddablx.g | |- G = { <. 1 , CC >. , <. 2 , + >. } |
|
| 2 | cnex | |- CC e. _V |
|
| 3 | addex | |- + e. _V |
|
| 4 | addcl | |- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
|
| 5 | addass | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
|
| 6 | 0cn | |- 0 e. CC |
|
| 7 | addlid | |- ( x e. CC -> ( 0 + x ) = x ) |
|
| 8 | negcl | |- ( x e. CC -> -u x e. CC ) |
|
| 9 | addcom | |- ( ( x e. CC /\ -u x e. CC ) -> ( x + -u x ) = ( -u x + x ) ) |
|
| 10 | 8 9 | mpdan | |- ( x e. CC -> ( x + -u x ) = ( -u x + x ) ) |
| 11 | negid | |- ( x e. CC -> ( x + -u x ) = 0 ) |
|
| 12 | 10 11 | eqtr3d | |- ( x e. CC -> ( -u x + x ) = 0 ) |
| 13 | 2 3 1 4 5 6 7 8 12 | isgrpix | |- G e. Grp |
| 14 | 2 3 1 | grpbasex | |- CC = ( Base ` G ) |
| 15 | 2 3 1 | grpplusgx | |- + = ( +g ` G ) |
| 16 | addcom | |- ( ( x e. CC /\ y e. CC ) -> ( x + y ) = ( y + x ) ) |
|
| 17 | 13 14 15 16 | isabli | |- G e. Abel |