This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the commutes relation. Remark in Kalmbach p. 23. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | |- A e. CH |
|
| pjoml2.2 | |- B e. CH |
||
| Assertion | cmbr2i | |- ( A C_H B <-> A = ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | |- A e. CH |
|
| 2 | pjoml2.2 | |- B e. CH |
|
| 3 | 1 2 | cmcm4i | |- ( A C_H B <-> ( _|_ ` A ) C_H ( _|_ ` B ) ) |
| 4 | 1 | choccli | |- ( _|_ ` A ) e. CH |
| 5 | 2 | choccli | |- ( _|_ ` B ) e. CH |
| 6 | 4 5 | cmbri | |- ( ( _|_ ` A ) C_H ( _|_ ` B ) <-> ( _|_ ` A ) = ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) vH ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` B ) ) ) ) ) |
| 7 | eqcom | |- ( A = ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) <-> ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) = A ) |
|
| 8 | 1 2 | chjcli | |- ( A vH B ) e. CH |
| 9 | 1 5 | chjcli | |- ( A vH ( _|_ ` B ) ) e. CH |
| 10 | 8 9 | chincli | |- ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) e. CH |
| 11 | 10 1 | chcon3i | |- ( ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) = A <-> ( _|_ ` A ) = ( _|_ ` ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) ) ) |
| 12 | 8 9 | chdmm1i | |- ( _|_ ` ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) ) = ( ( _|_ ` ( A vH B ) ) vH ( _|_ ` ( A vH ( _|_ ` B ) ) ) ) |
| 13 | 1 2 | chdmj1i | |- ( _|_ ` ( A vH B ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) |
| 14 | 1 5 | chdmj1i | |- ( _|_ ` ( A vH ( _|_ ` B ) ) ) = ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` B ) ) ) |
| 15 | 13 14 | oveq12i | |- ( ( _|_ ` ( A vH B ) ) vH ( _|_ ` ( A vH ( _|_ ` B ) ) ) ) = ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) vH ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` B ) ) ) ) |
| 16 | 12 15 | eqtri | |- ( _|_ ` ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) ) = ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) vH ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` B ) ) ) ) |
| 17 | 16 | eqeq2i | |- ( ( _|_ ` A ) = ( _|_ ` ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) ) <-> ( _|_ ` A ) = ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) vH ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` B ) ) ) ) ) |
| 18 | 7 11 17 | 3bitrri | |- ( ( _|_ ` A ) = ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) vH ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` B ) ) ) ) <-> A = ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) ) |
| 19 | 3 6 18 | 3bitri | |- ( A C_H B <-> A = ( ( A vH B ) i^i ( A vH ( _|_ ` B ) ) ) ) |