This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition for the commutes relation. (Contributed by NM, 6-Dec-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | |- A e. CH |
|
| pjoml2.2 | |- B e. CH |
||
| Assertion | cmbr4i | |- ( A C_H B <-> ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | |- A e. CH |
|
| 2 | pjoml2.2 | |- B e. CH |
|
| 3 | 1 2 | cmbr3i | |- ( A C_H B <-> ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) ) |
| 4 | inss2 | |- ( A i^i B ) C_ B |
|
| 5 | sseq1 | |- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) -> ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B <-> ( A i^i B ) C_ B ) ) |
|
| 6 | 4 5 | mpbiri | |- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) -> ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B ) |
| 7 | inss1 | |- ( A i^i ( ( _|_ ` A ) vH B ) ) C_ A |
|
| 8 | 7 | jctl | |- ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B -> ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ A /\ ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B ) ) |
| 9 | ssin | |- ( ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ A /\ ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B ) <-> ( A i^i ( ( _|_ ` A ) vH B ) ) C_ ( A i^i B ) ) |
|
| 10 | 8 9 | sylib | |- ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B -> ( A i^i ( ( _|_ ` A ) vH B ) ) C_ ( A i^i B ) ) |
| 11 | 1 | choccli | |- ( _|_ ` A ) e. CH |
| 12 | 2 11 | chub2i | |- B C_ ( ( _|_ ` A ) vH B ) |
| 13 | sslin | |- ( B C_ ( ( _|_ ` A ) vH B ) -> ( A i^i B ) C_ ( A i^i ( ( _|_ ` A ) vH B ) ) ) |
|
| 14 | 12 13 | ax-mp | |- ( A i^i B ) C_ ( A i^i ( ( _|_ ` A ) vH B ) ) |
| 15 | 10 14 | jctir | |- ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B -> ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ ( A i^i B ) /\ ( A i^i B ) C_ ( A i^i ( ( _|_ ` A ) vH B ) ) ) ) |
| 16 | eqss | |- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) <-> ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ ( A i^i B ) /\ ( A i^i B ) C_ ( A i^i ( ( _|_ ` A ) vH B ) ) ) ) |
|
| 17 | 15 16 | sylibr | |- ( ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B -> ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) ) |
| 18 | 6 17 | impbii | |- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) <-> ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B ) |
| 19 | 3 18 | bitri | |- ( A C_H B <-> ( A i^i ( ( _|_ ` A ) vH B ) ) C_ B ) |