This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph isomorphism is transitive. (Contributed by AV, 5-Dec-2022) (Revised by AV, 3-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grictr | |- ( ( R ~=gr S /\ S ~=gr T ) -> R ~=gr T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric | |- ( R ~=gr S <-> ( R GraphIso S ) =/= (/) ) |
|
| 2 | brgric | |- ( S ~=gr T <-> ( S GraphIso T ) =/= (/) ) |
|
| 3 | n0 | |- ( ( R GraphIso S ) =/= (/) <-> E. g g e. ( R GraphIso S ) ) |
|
| 4 | n0 | |- ( ( S GraphIso T ) =/= (/) <-> E. f f e. ( S GraphIso T ) ) |
|
| 5 | exdistrv | |- ( E. g E. f ( g e. ( R GraphIso S ) /\ f e. ( S GraphIso T ) ) <-> ( E. g g e. ( R GraphIso S ) /\ E. f f e. ( S GraphIso T ) ) ) |
|
| 6 | grimco | |- ( ( f e. ( S GraphIso T ) /\ g e. ( R GraphIso S ) ) -> ( f o. g ) e. ( R GraphIso T ) ) |
|
| 7 | 6 | ancoms | |- ( ( g e. ( R GraphIso S ) /\ f e. ( S GraphIso T ) ) -> ( f o. g ) e. ( R GraphIso T ) ) |
| 8 | brgrici | |- ( ( f o. g ) e. ( R GraphIso T ) -> R ~=gr T ) |
|
| 9 | 7 8 | syl | |- ( ( g e. ( R GraphIso S ) /\ f e. ( S GraphIso T ) ) -> R ~=gr T ) |
| 10 | 9 | exlimivv | |- ( E. g E. f ( g e. ( R GraphIso S ) /\ f e. ( S GraphIso T ) ) -> R ~=gr T ) |
| 11 | 5 10 | sylbir | |- ( ( E. g g e. ( R GraphIso S ) /\ E. f f e. ( S GraphIso T ) ) -> R ~=gr T ) |
| 12 | 3 4 11 | syl2anb | |- ( ( ( R GraphIso S ) =/= (/) /\ ( S GraphIso T ) =/= (/) ) -> R ~=gr T ) |
| 13 | 1 2 12 | syl2anb | |- ( ( R ~=gr S /\ S ~=gr T ) -> R ~=gr T ) |