This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If all (closed) neighborhoods of the vertices in two simple graphs with the same order induce a subgraph which is isomorphic to an N-star, then the two graphs are locally isomorphic. (Contributed by AV, 29-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgr3stgrgrlim.n | |- N e. NN0 |
|
| clnbgr3stgrgrlim.v | |- V = ( Vtx ` G ) |
||
| clnbgr3stgrgrlim.w | |- W = ( Vtx ` H ) |
||
| Assertion | clnbgr3stgrgrlic | |- ( ( ( G e. USGraph /\ H e. USGraph /\ V ~~ W ) /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> G ~=lgr H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgr3stgrgrlim.n | |- N e. NN0 |
|
| 2 | clnbgr3stgrgrlim.v | |- V = ( Vtx ` G ) |
|
| 3 | clnbgr3stgrgrlim.w | |- W = ( Vtx ` H ) |
|
| 4 | 2 | fvexi | |- V e. _V |
| 5 | 3 | fvexi | |- W e. _V |
| 6 | 4 5 | pm3.2i | |- ( V e. _V /\ W e. _V ) |
| 7 | breng | |- ( ( V e. _V /\ W e. _V ) -> ( V ~~ W <-> E. f f : V -1-1-onto-> W ) ) |
|
| 8 | 6 7 | mp1i | |- ( ( G e. USGraph /\ H e. USGraph ) -> ( V ~~ W <-> E. f f : V -1-1-onto-> W ) ) |
| 9 | usgruhgr | |- ( H e. USGraph -> H e. UHGraph ) |
|
| 10 | 9 | adantl | |- ( ( G e. USGraph /\ H e. USGraph ) -> H e. UHGraph ) |
| 11 | 10 | 3ad2ant1 | |- ( ( ( G e. USGraph /\ H e. USGraph ) /\ f : V -1-1-onto-> W /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> H e. UHGraph ) |
| 12 | 3 | clnbgrssvtx | |- ( H ClNeighbVtx ( f ` x ) ) C_ W |
| 13 | 12 | a1i | |- ( ( ( ( G e. USGraph /\ H e. USGraph ) /\ f : V -1-1-onto-> W /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) /\ x e. V ) -> ( H ClNeighbVtx ( f ` x ) ) C_ W ) |
| 14 | 3 | isubgruhgr | |- ( ( H e. UHGraph /\ ( H ClNeighbVtx ( f ` x ) ) C_ W ) -> ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) e. UHGraph ) |
| 15 | 11 13 14 | syl2an2r | |- ( ( ( ( G e. USGraph /\ H e. USGraph ) /\ f : V -1-1-onto-> W /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) /\ x e. V ) -> ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) e. UHGraph ) |
| 16 | f1of | |- ( f : V -1-1-onto-> W -> f : V --> W ) |
|
| 17 | 16 | 3ad2ant2 | |- ( ( ( G e. USGraph /\ H e. USGraph ) /\ f : V -1-1-onto-> W /\ x e. V ) -> f : V --> W ) |
| 18 | simp3 | |- ( ( ( G e. USGraph /\ H e. USGraph ) /\ f : V -1-1-onto-> W /\ x e. V ) -> x e. V ) |
|
| 19 | 17 18 | ffvelcdmd | |- ( ( ( G e. USGraph /\ H e. USGraph ) /\ f : V -1-1-onto-> W /\ x e. V ) -> ( f ` x ) e. W ) |
| 20 | oveq2 | |- ( y = ( f ` x ) -> ( H ClNeighbVtx y ) = ( H ClNeighbVtx ( f ` x ) ) ) |
|
| 21 | 20 | oveq2d | |- ( y = ( f ` x ) -> ( H ISubGr ( H ClNeighbVtx y ) ) = ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) |
| 22 | 21 | breq1d | |- ( y = ( f ` x ) -> ( ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) <-> ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ~=gr ( StarGr ` N ) ) ) |
| 23 | 22 | rspcv | |- ( ( f ` x ) e. W -> ( A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) -> ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ~=gr ( StarGr ` N ) ) ) |
| 24 | 19 23 | syl | |- ( ( ( G e. USGraph /\ H e. USGraph ) /\ f : V -1-1-onto-> W /\ x e. V ) -> ( A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) -> ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ~=gr ( StarGr ` N ) ) ) |
| 25 | 24 | 3exp | |- ( ( G e. USGraph /\ H e. USGraph ) -> ( f : V -1-1-onto-> W -> ( x e. V -> ( A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) -> ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ~=gr ( StarGr ` N ) ) ) ) ) |
| 26 | 25 | com34 | |- ( ( G e. USGraph /\ H e. USGraph ) -> ( f : V -1-1-onto-> W -> ( A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) -> ( x e. V -> ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ~=gr ( StarGr ` N ) ) ) ) ) |
| 27 | 26 | 3imp1 | |- ( ( ( ( G e. USGraph /\ H e. USGraph ) /\ f : V -1-1-onto-> W /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) /\ x e. V ) -> ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ~=gr ( StarGr ` N ) ) |
| 28 | gricsym | |- ( ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) e. UHGraph -> ( ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ~=gr ( StarGr ` N ) -> ( StarGr ` N ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) ) |
|
| 29 | 15 27 28 | sylc | |- ( ( ( ( G e. USGraph /\ H e. USGraph ) /\ f : V -1-1-onto-> W /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) /\ x e. V ) -> ( StarGr ` N ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) |
| 30 | 29 | anim1ci | |- ( ( ( ( ( G e. USGraph /\ H e. USGraph ) /\ f : V -1-1-onto-> W /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) /\ x e. V ) /\ ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) ) -> ( ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ ( StarGr ` N ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) ) |
| 31 | grictr | |- ( ( ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ ( StarGr ` N ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) -> ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) |
|
| 32 | 30 31 | syl | |- ( ( ( ( ( G e. USGraph /\ H e. USGraph ) /\ f : V -1-1-onto-> W /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) /\ x e. V ) /\ ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) ) -> ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) |
| 33 | 32 | ex | |- ( ( ( ( G e. USGraph /\ H e. USGraph ) /\ f : V -1-1-onto-> W /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) /\ x e. V ) -> ( ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) -> ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) ) |
| 34 | 33 | ralimdva | |- ( ( ( G e. USGraph /\ H e. USGraph ) /\ f : V -1-1-onto-> W /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> ( A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) -> A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) ) |
| 35 | 34 | 3exp | |- ( ( G e. USGraph /\ H e. USGraph ) -> ( f : V -1-1-onto-> W -> ( A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) -> ( A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) -> A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) ) ) ) |
| 36 | 35 | com24 | |- ( ( G e. USGraph /\ H e. USGraph ) -> ( A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) -> ( A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) -> ( f : V -1-1-onto-> W -> A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) ) ) ) |
| 37 | 36 | imp32 | |- ( ( ( G e. USGraph /\ H e. USGraph ) /\ ( A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) ) -> ( f : V -1-1-onto-> W -> A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) ) |
| 38 | 37 | ancld | |- ( ( ( G e. USGraph /\ H e. USGraph ) /\ ( A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) ) -> ( f : V -1-1-onto-> W -> ( f : V -1-1-onto-> W /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) ) ) |
| 39 | 38 | eximdv | |- ( ( ( G e. USGraph /\ H e. USGraph ) /\ ( A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) ) -> ( E. f f : V -1-1-onto-> W -> E. f ( f : V -1-1-onto-> W /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) ) ) |
| 40 | 39 | ex | |- ( ( G e. USGraph /\ H e. USGraph ) -> ( ( A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> ( E. f f : V -1-1-onto-> W -> E. f ( f : V -1-1-onto-> W /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) ) ) ) |
| 41 | 40 | com23 | |- ( ( G e. USGraph /\ H e. USGraph ) -> ( E. f f : V -1-1-onto-> W -> ( ( A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> E. f ( f : V -1-1-onto-> W /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) ) ) ) |
| 42 | 8 41 | sylbid | |- ( ( G e. USGraph /\ H e. USGraph ) -> ( V ~~ W -> ( ( A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> E. f ( f : V -1-1-onto-> W /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) ) ) ) |
| 43 | 42 | 3impia | |- ( ( G e. USGraph /\ H e. USGraph /\ V ~~ W ) -> ( ( A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> E. f ( f : V -1-1-onto-> W /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) ) ) |
| 44 | 43 | 3impib | |- ( ( ( G e. USGraph /\ H e. USGraph /\ V ~~ W ) /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> E. f ( f : V -1-1-onto-> W /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) ) |
| 45 | 2 3 | dfgrlic2 | |- ( ( G e. USGraph /\ H e. USGraph ) -> ( G ~=lgr H <-> E. f ( f : V -1-1-onto-> W /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) ) ) |
| 46 | 45 | 3adant3 | |- ( ( G e. USGraph /\ H e. USGraph /\ V ~~ W ) -> ( G ~=lgr H <-> E. f ( f : V -1-1-onto-> W /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) ) ) |
| 47 | 46 | 3ad2ant1 | |- ( ( ( G e. USGraph /\ H e. USGraph /\ V ~~ W ) /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> ( G ~=lgr H <-> E. f ( f : V -1-1-onto-> W /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` x ) ) ) ) ) ) |
| 48 | 44 47 | mpbird | |- ( ( ( G e. USGraph /\ H e. USGraph /\ V ~~ W ) /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> G ~=lgr H ) |