This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus a vector plus itself. (Contributed by NM, 4-Dec-2006) (Revised by AV, 28-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmpm1dir.v | |- V = ( Base ` W ) |
|
| clmpm1dir.s | |- .x. = ( .s ` W ) |
||
| clmpm1dir.a | |- .+ = ( +g ` W ) |
||
| clmvsrinv.0 | |- .0. = ( 0g ` W ) |
||
| Assertion | clmvslinv | |- ( ( W e. CMod /\ A e. V ) -> ( ( -u 1 .x. A ) .+ A ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmpm1dir.v | |- V = ( Base ` W ) |
|
| 2 | clmpm1dir.s | |- .x. = ( .s ` W ) |
|
| 3 | clmpm1dir.a | |- .+ = ( +g ` W ) |
|
| 4 | clmvsrinv.0 | |- .0. = ( 0g ` W ) |
|
| 5 | eqid | |- ( invg ` W ) = ( invg ` W ) |
|
| 6 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 7 | 1 5 6 2 | clmvneg1 | |- ( ( W e. CMod /\ A e. V ) -> ( -u 1 .x. A ) = ( ( invg ` W ) ` A ) ) |
| 8 | 7 | oveq1d | |- ( ( W e. CMod /\ A e. V ) -> ( ( -u 1 .x. A ) .+ A ) = ( ( ( invg ` W ) ` A ) .+ A ) ) |
| 9 | clmgrp | |- ( W e. CMod -> W e. Grp ) |
|
| 10 | 1 3 4 5 | grplinv | |- ( ( W e. Grp /\ A e. V ) -> ( ( ( invg ` W ) ` A ) .+ A ) = .0. ) |
| 11 | 9 10 | sylan | |- ( ( W e. CMod /\ A e. V ) -> ( ( ( invg ` W ) ` A ) .+ A ) = .0. ) |
| 12 | 8 11 | eqtrd | |- ( ( W e. CMod /\ A e. V ) -> ( ( -u 1 .x. A ) .+ A ) = .0. ) |