This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus a vector plus itself. (Contributed by NM, 4-Dec-2006) (Revised by AV, 28-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmpm1dir.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clmpm1dir.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| clmpm1dir.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| clmvsrinv.0 | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | clmvslinv | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( ( - 1 · 𝐴 ) + 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmpm1dir.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clmpm1dir.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | clmpm1dir.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 4 | clmvsrinv.0 | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 7 | 1 5 6 2 | clmvneg1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( - 1 · 𝐴 ) = ( ( invg ‘ 𝑊 ) ‘ 𝐴 ) ) |
| 8 | 7 | oveq1d | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( ( - 1 · 𝐴 ) + 𝐴 ) = ( ( ( invg ‘ 𝑊 ) ‘ 𝐴 ) + 𝐴 ) ) |
| 9 | clmgrp | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ Grp ) | |
| 10 | 1 3 4 5 | grplinv | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ) → ( ( ( invg ‘ 𝑊 ) ‘ 𝐴 ) + 𝐴 ) = 0 ) |
| 11 | 9 10 | sylan | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( ( ( invg ‘ 𝑊 ) ‘ 𝐴 ) + 𝐴 ) = 0 ) |
| 12 | 8 11 | eqtrd | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( ( - 1 · 𝐴 ) + 𝐴 ) = 0 ) |