This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for the scalar product. (Contributed by NM, 14-Feb-2008) (Revised by AV, 7-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvscl.v | |- V = ( Base ` W ) |
|
| clmvscl.f | |- F = ( Scalar ` W ) |
||
| clmvscl.s | |- .x. = ( .s ` W ) |
||
| clmvscl.k | |- K = ( Base ` F ) |
||
| Assertion | clmvscom | |- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( Q .x. ( R .x. X ) ) = ( R .x. ( Q .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvscl.v | |- V = ( Base ` W ) |
|
| 2 | clmvscl.f | |- F = ( Scalar ` W ) |
|
| 3 | clmvscl.s | |- .x. = ( .s ` W ) |
|
| 4 | clmvscl.k | |- K = ( Base ` F ) |
|
| 5 | ssel | |- ( K C_ CC -> ( Q e. K -> Q e. CC ) ) |
|
| 6 | ssel | |- ( K C_ CC -> ( R e. K -> R e. CC ) ) |
|
| 7 | 5 6 | anim12d | |- ( K C_ CC -> ( ( Q e. K /\ R e. K ) -> ( Q e. CC /\ R e. CC ) ) ) |
| 8 | 2 4 | clmsscn | |- ( W e. CMod -> K C_ CC ) |
| 9 | 7 8 | syl11 | |- ( ( Q e. K /\ R e. K ) -> ( W e. CMod -> ( Q e. CC /\ R e. CC ) ) ) |
| 10 | 9 | 3adant3 | |- ( ( Q e. K /\ R e. K /\ X e. V ) -> ( W e. CMod -> ( Q e. CC /\ R e. CC ) ) ) |
| 11 | 10 | impcom | |- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( Q e. CC /\ R e. CC ) ) |
| 12 | mulcom | |- ( ( Q e. CC /\ R e. CC ) -> ( Q x. R ) = ( R x. Q ) ) |
|
| 13 | 11 12 | syl | |- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( Q x. R ) = ( R x. Q ) ) |
| 14 | 13 | oveq1d | |- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q x. R ) .x. X ) = ( ( R x. Q ) .x. X ) ) |
| 15 | 1 2 3 4 | clmvsass | |- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q x. R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) |
| 16 | 3ancoma | |- ( ( Q e. K /\ R e. K /\ X e. V ) <-> ( R e. K /\ Q e. K /\ X e. V ) ) |
|
| 17 | 1 2 3 4 | clmvsass | |- ( ( W e. CMod /\ ( R e. K /\ Q e. K /\ X e. V ) ) -> ( ( R x. Q ) .x. X ) = ( R .x. ( Q .x. X ) ) ) |
| 18 | 16 17 | sylan2b | |- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( R x. Q ) .x. X ) = ( R .x. ( Q .x. X ) ) ) |
| 19 | 14 15 18 | 3eqtr3d | |- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( Q .x. ( R .x. X ) ) = ( R .x. ( Q .x. X ) ) ) |