This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for the scalar product. (Contributed by NM, 14-Feb-2008) (Revised by AV, 7-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvscl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clmvscl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| clmvscl.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| clmvscl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | clmvscom | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑄 · ( 𝑅 · 𝑋 ) ) = ( 𝑅 · ( 𝑄 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvscl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clmvscl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | clmvscl.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | clmvscl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | ssel | ⊢ ( 𝐾 ⊆ ℂ → ( 𝑄 ∈ 𝐾 → 𝑄 ∈ ℂ ) ) | |
| 6 | ssel | ⊢ ( 𝐾 ⊆ ℂ → ( 𝑅 ∈ 𝐾 → 𝑅 ∈ ℂ ) ) | |
| 7 | 5 6 | anim12d | ⊢ ( 𝐾 ⊆ ℂ → ( ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) → ( 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) ) |
| 8 | 2 4 | clmsscn | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
| 9 | 7 8 | syl11 | ⊢ ( ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) → ( 𝑊 ∈ ℂMod → ( 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) ) |
| 10 | 9 | 3adant3 | ⊢ ( ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑊 ∈ ℂMod → ( 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) ) |
| 11 | 10 | impcom | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) |
| 12 | mulcom | ⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( 𝑄 · 𝑅 ) = ( 𝑅 · 𝑄 ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑄 · 𝑅 ) = ( 𝑅 · 𝑄 ) ) |
| 14 | 13 | oveq1d | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 · 𝑅 ) · 𝑋 ) = ( ( 𝑅 · 𝑄 ) · 𝑋 ) ) |
| 15 | 1 2 3 4 | clmvsass | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 · 𝑅 ) · 𝑋 ) = ( 𝑄 · ( 𝑅 · 𝑋 ) ) ) |
| 16 | 3ancoma | ⊢ ( ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ↔ ( 𝑅 ∈ 𝐾 ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) | |
| 17 | 1 2 3 4 | clmvsass | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑅 · 𝑄 ) · 𝑋 ) = ( 𝑅 · ( 𝑄 · 𝑋 ) ) ) |
| 18 | 16 17 | sylan2b | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑅 · 𝑄 ) · 𝑋 ) = ( 𝑅 · ( 𝑄 · 𝑋 ) ) ) |
| 19 | 14 15 18 | 3eqtr3d | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑄 · ( 𝑅 · 𝑋 ) ) = ( 𝑅 · ( 𝑄 · 𝑋 ) ) ) |