This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double negative of a vector. (Contributed by NM, 6-Aug-2007) (Revised by AV, 21-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmpm1dir.v | |- V = ( Base ` W ) |
|
| clmpm1dir.s | |- .x. = ( .s ` W ) |
||
| clmpm1dir.a | |- .+ = ( +g ` W ) |
||
| Assertion | clmnegneg | |- ( ( W e. CMod /\ A e. V ) -> ( -u 1 .x. ( -u 1 .x. A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmpm1dir.v | |- V = ( Base ` W ) |
|
| 2 | clmpm1dir.s | |- .x. = ( .s ` W ) |
|
| 3 | clmpm1dir.a | |- .+ = ( +g ` W ) |
|
| 4 | neg1mulneg1e1 | |- ( -u 1 x. -u 1 ) = 1 |
|
| 5 | 4 | oveq1i | |- ( ( -u 1 x. -u 1 ) .x. A ) = ( 1 .x. A ) |
| 6 | simpl | |- ( ( W e. CMod /\ A e. V ) -> W e. CMod ) |
|
| 7 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 8 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 9 | 7 8 | clmneg1 | |- ( W e. CMod -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 10 | 9 | adantr | |- ( ( W e. CMod /\ A e. V ) -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 11 | simpr | |- ( ( W e. CMod /\ A e. V ) -> A e. V ) |
|
| 12 | 1 7 2 8 | clmvsass | |- ( ( W e. CMod /\ ( -u 1 e. ( Base ` ( Scalar ` W ) ) /\ -u 1 e. ( Base ` ( Scalar ` W ) ) /\ A e. V ) ) -> ( ( -u 1 x. -u 1 ) .x. A ) = ( -u 1 .x. ( -u 1 .x. A ) ) ) |
| 13 | 6 10 10 11 12 | syl13anc | |- ( ( W e. CMod /\ A e. V ) -> ( ( -u 1 x. -u 1 ) .x. A ) = ( -u 1 .x. ( -u 1 .x. A ) ) ) |
| 14 | 1 2 | clmvs1 | |- ( ( W e. CMod /\ A e. V ) -> ( 1 .x. A ) = A ) |
| 15 | 5 13 14 | 3eqtr3a | |- ( ( W e. CMod /\ A e. V ) -> ( -u 1 .x. ( -u 1 .x. A ) ) = A ) |