This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climneg.1 | |- F/ k ph |
|
| climneg.2 | |- F/_ k F |
||
| climneg.3 | |- Z = ( ZZ>= ` M ) |
||
| climneg.4 | |- ( ph -> M e. ZZ ) |
||
| climneg.5 | |- ( ph -> F ~~> A ) |
||
| climneg.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| Assertion | climneg | |- ( ph -> ( k e. Z |-> -u ( F ` k ) ) ~~> -u A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climneg.1 | |- F/ k ph |
|
| 2 | climneg.2 | |- F/_ k F |
|
| 3 | climneg.3 | |- Z = ( ZZ>= ` M ) |
|
| 4 | climneg.4 | |- ( ph -> M e. ZZ ) |
|
| 5 | climneg.5 | |- ( ph -> F ~~> A ) |
|
| 6 | climneg.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 7 | nfmpt1 | |- F/_ k ( k e. Z |-> -u 1 ) |
|
| 8 | nfmpt1 | |- F/_ k ( k e. Z |-> -u ( F ` k ) ) |
|
| 9 | 3 | fvexi | |- Z e. _V |
| 10 | 9 | mptex | |- ( k e. Z |-> -u 1 ) e. _V |
| 11 | 10 | a1i | |- ( ph -> ( k e. Z |-> -u 1 ) e. _V ) |
| 12 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 13 | 12 | negcld | |- ( ph -> -u 1 e. CC ) |
| 14 | eqidd | |- ( j e. Z -> ( k e. Z |-> -u 1 ) = ( k e. Z |-> -u 1 ) ) |
|
| 15 | eqidd | |- ( ( j e. Z /\ k = j ) -> -u 1 = -u 1 ) |
|
| 16 | id | |- ( j e. Z -> j e. Z ) |
|
| 17 | 1cnd | |- ( j e. Z -> 1 e. CC ) |
|
| 18 | 17 | negcld | |- ( j e. Z -> -u 1 e. CC ) |
| 19 | 14 15 16 18 | fvmptd | |- ( j e. Z -> ( ( k e. Z |-> -u 1 ) ` j ) = -u 1 ) |
| 20 | 19 | adantl | |- ( ( ph /\ j e. Z ) -> ( ( k e. Z |-> -u 1 ) ` j ) = -u 1 ) |
| 21 | 3 4 11 13 20 | climconst | |- ( ph -> ( k e. Z |-> -u 1 ) ~~> -u 1 ) |
| 22 | 9 | mptex | |- ( k e. Z |-> -u ( F ` k ) ) e. _V |
| 23 | 22 | a1i | |- ( ph -> ( k e. Z |-> -u ( F ` k ) ) e. _V ) |
| 24 | neg1cn | |- -u 1 e. CC |
|
| 25 | eqid | |- ( k e. Z |-> -u 1 ) = ( k e. Z |-> -u 1 ) |
|
| 26 | 25 | fvmpt2 | |- ( ( k e. Z /\ -u 1 e. CC ) -> ( ( k e. Z |-> -u 1 ) ` k ) = -u 1 ) |
| 27 | 24 26 | mpan2 | |- ( k e. Z -> ( ( k e. Z |-> -u 1 ) ` k ) = -u 1 ) |
| 28 | 27 24 | eqeltrdi | |- ( k e. Z -> ( ( k e. Z |-> -u 1 ) ` k ) e. CC ) |
| 29 | 28 | adantl | |- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> -u 1 ) ` k ) e. CC ) |
| 30 | simpr | |- ( ( ph /\ k e. Z ) -> k e. Z ) |
|
| 31 | 6 | negcld | |- ( ( ph /\ k e. Z ) -> -u ( F ` k ) e. CC ) |
| 32 | eqid | |- ( k e. Z |-> -u ( F ` k ) ) = ( k e. Z |-> -u ( F ` k ) ) |
|
| 33 | 32 | fvmpt2 | |- ( ( k e. Z /\ -u ( F ` k ) e. CC ) -> ( ( k e. Z |-> -u ( F ` k ) ) ` k ) = -u ( F ` k ) ) |
| 34 | 30 31 33 | syl2anc | |- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> -u ( F ` k ) ) ` k ) = -u ( F ` k ) ) |
| 35 | 6 | mulm1d | |- ( ( ph /\ k e. Z ) -> ( -u 1 x. ( F ` k ) ) = -u ( F ` k ) ) |
| 36 | 27 | eqcomd | |- ( k e. Z -> -u 1 = ( ( k e. Z |-> -u 1 ) ` k ) ) |
| 37 | 36 | adantl | |- ( ( ph /\ k e. Z ) -> -u 1 = ( ( k e. Z |-> -u 1 ) ` k ) ) |
| 38 | 37 | oveq1d | |- ( ( ph /\ k e. Z ) -> ( -u 1 x. ( F ` k ) ) = ( ( ( k e. Z |-> -u 1 ) ` k ) x. ( F ` k ) ) ) |
| 39 | 34 35 38 | 3eqtr2d | |- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> -u ( F ` k ) ) ` k ) = ( ( ( k e. Z |-> -u 1 ) ` k ) x. ( F ` k ) ) ) |
| 40 | 1 7 2 8 3 4 21 23 5 29 6 39 | climmulf | |- ( ph -> ( k e. Z |-> -u ( F ` k ) ) ~~> ( -u 1 x. A ) ) |
| 41 | climcl | |- ( F ~~> A -> A e. CC ) |
|
| 42 | 5 41 | syl | |- ( ph -> A e. CC ) |
| 43 | 42 | mulm1d | |- ( ph -> ( -u 1 x. A ) = -u A ) |
| 44 | 40 43 | breqtrd | |- ( ph -> ( k e. Z |-> -u ( F ` k ) ) ~~> -u A ) |