This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of climinf using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017) (Revised by AV, 15-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climinff.1 | |- F/ k ph |
|
| climinff.2 | |- F/_ k F |
||
| climinff.3 | |- Z = ( ZZ>= ` M ) |
||
| climinff.4 | |- ( ph -> M e. ZZ ) |
||
| climinff.5 | |- ( ph -> F : Z --> RR ) |
||
| climinff.6 | |- ( ( ph /\ k e. Z ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
||
| climinff.7 | |- ( ph -> E. x e. RR A. k e. Z x <_ ( F ` k ) ) |
||
| Assertion | climinff | |- ( ph -> F ~~> inf ( ran F , RR , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climinff.1 | |- F/ k ph |
|
| 2 | climinff.2 | |- F/_ k F |
|
| 3 | climinff.3 | |- Z = ( ZZ>= ` M ) |
|
| 4 | climinff.4 | |- ( ph -> M e. ZZ ) |
|
| 5 | climinff.5 | |- ( ph -> F : Z --> RR ) |
|
| 6 | climinff.6 | |- ( ( ph /\ k e. Z ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
|
| 7 | climinff.7 | |- ( ph -> E. x e. RR A. k e. Z x <_ ( F ` k ) ) |
|
| 8 | nfv | |- F/ k j e. Z |
|
| 9 | 1 8 | nfan | |- F/ k ( ph /\ j e. Z ) |
| 10 | nfcv | |- F/_ k ( j + 1 ) |
|
| 11 | 2 10 | nffv | |- F/_ k ( F ` ( j + 1 ) ) |
| 12 | nfcv | |- F/_ k <_ |
|
| 13 | nfcv | |- F/_ k j |
|
| 14 | 2 13 | nffv | |- F/_ k ( F ` j ) |
| 15 | 11 12 14 | nfbr | |- F/ k ( F ` ( j + 1 ) ) <_ ( F ` j ) |
| 16 | 9 15 | nfim | |- F/ k ( ( ph /\ j e. Z ) -> ( F ` ( j + 1 ) ) <_ ( F ` j ) ) |
| 17 | eleq1w | |- ( k = j -> ( k e. Z <-> j e. Z ) ) |
|
| 18 | 17 | anbi2d | |- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
| 19 | fvoveq1 | |- ( k = j -> ( F ` ( k + 1 ) ) = ( F ` ( j + 1 ) ) ) |
|
| 20 | fveq2 | |- ( k = j -> ( F ` k ) = ( F ` j ) ) |
|
| 21 | 19 20 | breq12d | |- ( k = j -> ( ( F ` ( k + 1 ) ) <_ ( F ` k ) <-> ( F ` ( j + 1 ) ) <_ ( F ` j ) ) ) |
| 22 | 18 21 | imbi12d | |- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) <-> ( ( ph /\ j e. Z ) -> ( F ` ( j + 1 ) ) <_ ( F ` j ) ) ) ) |
| 23 | 16 22 6 | chvarfv | |- ( ( ph /\ j e. Z ) -> ( F ` ( j + 1 ) ) <_ ( F ` j ) ) |
| 24 | nfcv | |- F/_ k RR |
|
| 25 | 8 | nfci | |- F/_ k Z |
| 26 | nfcv | |- F/_ k x |
|
| 27 | 26 12 14 | nfbr | |- F/ k x <_ ( F ` j ) |
| 28 | 25 27 | nfralw | |- F/ k A. j e. Z x <_ ( F ` j ) |
| 29 | 24 28 | nfrexw | |- F/ k E. x e. RR A. j e. Z x <_ ( F ` j ) |
| 30 | 1 29 | nfim | |- F/ k ( ph -> E. x e. RR A. j e. Z x <_ ( F ` j ) ) |
| 31 | nfv | |- F/ j x <_ ( F ` k ) |
|
| 32 | 20 | breq2d | |- ( k = j -> ( x <_ ( F ` k ) <-> x <_ ( F ` j ) ) ) |
| 33 | 31 27 32 | cbvralw | |- ( A. k e. Z x <_ ( F ` k ) <-> A. j e. Z x <_ ( F ` j ) ) |
| 34 | 33 | a1i | |- ( k = j -> ( A. k e. Z x <_ ( F ` k ) <-> A. j e. Z x <_ ( F ` j ) ) ) |
| 35 | 34 | rexbidv | |- ( k = j -> ( E. x e. RR A. k e. Z x <_ ( F ` k ) <-> E. x e. RR A. j e. Z x <_ ( F ` j ) ) ) |
| 36 | 35 | imbi2d | |- ( k = j -> ( ( ph -> E. x e. RR A. k e. Z x <_ ( F ` k ) ) <-> ( ph -> E. x e. RR A. j e. Z x <_ ( F ` j ) ) ) ) |
| 37 | 30 36 7 | chvarfv | |- ( ph -> E. x e. RR A. j e. Z x <_ ( F ` j ) ) |
| 38 | 3 4 5 23 37 | climinf | |- ( ph -> F ~~> inf ( ran F , RR , < ) ) |