This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climneg.1 | ⊢ Ⅎ 𝑘 𝜑 | |
| climneg.2 | ⊢ Ⅎ 𝑘 𝐹 | ||
| climneg.3 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| climneg.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climneg.5 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| climneg.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| Assertion | climneg | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ⇝ - 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climneg.1 | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | climneg.2 | ⊢ Ⅎ 𝑘 𝐹 | |
| 3 | climneg.3 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 4 | climneg.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 5 | climneg.5 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 6 | climneg.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 7 | nfmpt1 | ⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝑍 ↦ - 1 ) | |
| 8 | nfmpt1 | ⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) | |
| 9 | 3 | fvexi | ⊢ 𝑍 ∈ V |
| 10 | 9 | mptex | ⊢ ( 𝑘 ∈ 𝑍 ↦ - 1 ) ∈ V |
| 11 | 10 | a1i | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ - 1 ) ∈ V ) |
| 12 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 13 | 12 | negcld | ⊢ ( 𝜑 → - 1 ∈ ℂ ) |
| 14 | eqidd | ⊢ ( 𝑗 ∈ 𝑍 → ( 𝑘 ∈ 𝑍 ↦ - 1 ) = ( 𝑘 ∈ 𝑍 ↦ - 1 ) ) | |
| 15 | eqidd | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 = 𝑗 ) → - 1 = - 1 ) | |
| 16 | id | ⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ 𝑍 ) | |
| 17 | 1cnd | ⊢ ( 𝑗 ∈ 𝑍 → 1 ∈ ℂ ) | |
| 18 | 17 | negcld | ⊢ ( 𝑗 ∈ 𝑍 → - 1 ∈ ℂ ) |
| 19 | 14 15 16 18 | fvmptd | ⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ - 1 ) ‘ 𝑗 ) = - 1 ) |
| 20 | 19 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ - 1 ) ‘ 𝑗 ) = - 1 ) |
| 21 | 3 4 11 13 20 | climconst | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ - 1 ) ⇝ - 1 ) |
| 22 | 9 | mptex | ⊢ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ∈ V |
| 23 | 22 | a1i | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ∈ V ) |
| 24 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 25 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ - 1 ) = ( 𝑘 ∈ 𝑍 ↦ - 1 ) | |
| 26 | 25 | fvmpt2 | ⊢ ( ( 𝑘 ∈ 𝑍 ∧ - 1 ∈ ℂ ) → ( ( 𝑘 ∈ 𝑍 ↦ - 1 ) ‘ 𝑘 ) = - 1 ) |
| 27 | 24 26 | mpan2 | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ - 1 ) ‘ 𝑘 ) = - 1 ) |
| 28 | 27 24 | eqeltrdi | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ - 1 ) ‘ 𝑘 ) ∈ ℂ ) |
| 29 | 28 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ - 1 ) ‘ 𝑘 ) ∈ ℂ ) |
| 30 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) | |
| 31 | 6 | negcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → - ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 32 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) | |
| 33 | 32 | fvmpt2 | ⊢ ( ( 𝑘 ∈ 𝑍 ∧ - ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) = - ( 𝐹 ‘ 𝑘 ) ) |
| 34 | 30 31 33 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) = - ( 𝐹 ‘ 𝑘 ) ) |
| 35 | 6 | mulm1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( - 1 · ( 𝐹 ‘ 𝑘 ) ) = - ( 𝐹 ‘ 𝑘 ) ) |
| 36 | 27 | eqcomd | ⊢ ( 𝑘 ∈ 𝑍 → - 1 = ( ( 𝑘 ∈ 𝑍 ↦ - 1 ) ‘ 𝑘 ) ) |
| 37 | 36 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → - 1 = ( ( 𝑘 ∈ 𝑍 ↦ - 1 ) ‘ 𝑘 ) ) |
| 38 | 37 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( - 1 · ( 𝐹 ‘ 𝑘 ) ) = ( ( ( 𝑘 ∈ 𝑍 ↦ - 1 ) ‘ 𝑘 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 39 | 34 35 38 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) = ( ( ( 𝑘 ∈ 𝑍 ↦ - 1 ) ‘ 𝑘 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 40 | 1 7 2 8 3 4 21 23 5 29 6 39 | climmulf | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ⇝ ( - 1 · 𝐴 ) ) |
| 41 | climcl | ⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) | |
| 42 | 5 41 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 43 | 42 | mulm1d | ⊢ ( 𝜑 → ( - 1 · 𝐴 ) = - 𝐴 ) |
| 44 | 40 43 | breqtrd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑘 ) ) ⇝ - 𝐴 ) |