This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of a constant to the limit of a sequence. (Contributed by NM, 28-Feb-2008) (Revised by Mario Carneiro, 1-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2ser.1 | |- Z = ( ZZ>= ` M ) |
|
| climlec2.2 | |- ( ph -> M e. ZZ ) |
||
| climlec2.3 | |- ( ph -> A e. RR ) |
||
| climlec2.4 | |- ( ph -> F ~~> B ) |
||
| climlec2.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
||
| climlec2.6 | |- ( ( ph /\ k e. Z ) -> A <_ ( F ` k ) ) |
||
| Assertion | climlec2 | |- ( ph -> A <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climlec2.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climlec2.3 | |- ( ph -> A e. RR ) |
|
| 4 | climlec2.4 | |- ( ph -> F ~~> B ) |
|
| 5 | climlec2.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
|
| 6 | climlec2.6 | |- ( ( ph /\ k e. Z ) -> A <_ ( F ` k ) ) |
|
| 7 | 3 | recnd | |- ( ph -> A e. CC ) |
| 8 | 0z | |- 0 e. ZZ |
|
| 9 | uzssz | |- ( ZZ>= ` 0 ) C_ ZZ |
|
| 10 | zex | |- ZZ e. _V |
|
| 11 | 9 10 | climconst2 | |- ( ( A e. CC /\ 0 e. ZZ ) -> ( ZZ X. { A } ) ~~> A ) |
| 12 | 7 8 11 | sylancl | |- ( ph -> ( ZZ X. { A } ) ~~> A ) |
| 13 | eluzelz | |- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
|
| 14 | 13 1 | eleq2s | |- ( k e. Z -> k e. ZZ ) |
| 15 | fvconst2g | |- ( ( A e. RR /\ k e. ZZ ) -> ( ( ZZ X. { A } ) ` k ) = A ) |
|
| 16 | 3 14 15 | syl2an | |- ( ( ph /\ k e. Z ) -> ( ( ZZ X. { A } ) ` k ) = A ) |
| 17 | 3 | adantr | |- ( ( ph /\ k e. Z ) -> A e. RR ) |
| 18 | 16 17 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( ( ZZ X. { A } ) ` k ) e. RR ) |
| 19 | 16 6 | eqbrtrd | |- ( ( ph /\ k e. Z ) -> ( ( ZZ X. { A } ) ` k ) <_ ( F ` k ) ) |
| 20 | 1 2 12 4 18 5 19 | climle | |- ( ph -> A <_ B ) |