This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cju | |- ( A e. CC -> E! x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre | |- ( A e. CC -> E. y e. RR E. z e. RR A = ( y + ( _i x. z ) ) ) |
|
| 2 | recn | |- ( y e. RR -> y e. CC ) |
|
| 3 | ax-icn | |- _i e. CC |
|
| 4 | recn | |- ( z e. RR -> z e. CC ) |
|
| 5 | mulcl | |- ( ( _i e. CC /\ z e. CC ) -> ( _i x. z ) e. CC ) |
|
| 6 | 3 4 5 | sylancr | |- ( z e. RR -> ( _i x. z ) e. CC ) |
| 7 | subcl | |- ( ( y e. CC /\ ( _i x. z ) e. CC ) -> ( y - ( _i x. z ) ) e. CC ) |
|
| 8 | 2 6 7 | syl2an | |- ( ( y e. RR /\ z e. RR ) -> ( y - ( _i x. z ) ) e. CC ) |
| 9 | 2 | adantr | |- ( ( y e. RR /\ z e. RR ) -> y e. CC ) |
| 10 | 6 | adantl | |- ( ( y e. RR /\ z e. RR ) -> ( _i x. z ) e. CC ) |
| 11 | 9 10 9 | ppncand | |- ( ( y e. RR /\ z e. RR ) -> ( ( y + ( _i x. z ) ) + ( y - ( _i x. z ) ) ) = ( y + y ) ) |
| 12 | readdcl | |- ( ( y e. RR /\ y e. RR ) -> ( y + y ) e. RR ) |
|
| 13 | 12 | anidms | |- ( y e. RR -> ( y + y ) e. RR ) |
| 14 | 13 | adantr | |- ( ( y e. RR /\ z e. RR ) -> ( y + y ) e. RR ) |
| 15 | 11 14 | eqeltrd | |- ( ( y e. RR /\ z e. RR ) -> ( ( y + ( _i x. z ) ) + ( y - ( _i x. z ) ) ) e. RR ) |
| 16 | 9 10 10 | pnncand | |- ( ( y e. RR /\ z e. RR ) -> ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) = ( ( _i x. z ) + ( _i x. z ) ) ) |
| 17 | 3 | a1i | |- ( ( y e. RR /\ z e. RR ) -> _i e. CC ) |
| 18 | 4 | adantl | |- ( ( y e. RR /\ z e. RR ) -> z e. CC ) |
| 19 | 17 18 18 | adddid | |- ( ( y e. RR /\ z e. RR ) -> ( _i x. ( z + z ) ) = ( ( _i x. z ) + ( _i x. z ) ) ) |
| 20 | 16 19 | eqtr4d | |- ( ( y e. RR /\ z e. RR ) -> ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) = ( _i x. ( z + z ) ) ) |
| 21 | 20 | oveq2d | |- ( ( y e. RR /\ z e. RR ) -> ( _i x. ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) ) = ( _i x. ( _i x. ( z + z ) ) ) ) |
| 22 | 18 18 | addcld | |- ( ( y e. RR /\ z e. RR ) -> ( z + z ) e. CC ) |
| 23 | mulass | |- ( ( _i e. CC /\ _i e. CC /\ ( z + z ) e. CC ) -> ( ( _i x. _i ) x. ( z + z ) ) = ( _i x. ( _i x. ( z + z ) ) ) ) |
|
| 24 | 3 3 22 23 | mp3an12i | |- ( ( y e. RR /\ z e. RR ) -> ( ( _i x. _i ) x. ( z + z ) ) = ( _i x. ( _i x. ( z + z ) ) ) ) |
| 25 | 21 24 | eqtr4d | |- ( ( y e. RR /\ z e. RR ) -> ( _i x. ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) ) = ( ( _i x. _i ) x. ( z + z ) ) ) |
| 26 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 27 | 1re | |- 1 e. RR |
|
| 28 | 27 | renegcli | |- -u 1 e. RR |
| 29 | 26 28 | eqeltri | |- ( _i x. _i ) e. RR |
| 30 | simpr | |- ( ( y e. RR /\ z e. RR ) -> z e. RR ) |
|
| 31 | 30 30 | readdcld | |- ( ( y e. RR /\ z e. RR ) -> ( z + z ) e. RR ) |
| 32 | remulcl | |- ( ( ( _i x. _i ) e. RR /\ ( z + z ) e. RR ) -> ( ( _i x. _i ) x. ( z + z ) ) e. RR ) |
|
| 33 | 29 31 32 | sylancr | |- ( ( y e. RR /\ z e. RR ) -> ( ( _i x. _i ) x. ( z + z ) ) e. RR ) |
| 34 | 25 33 | eqeltrd | |- ( ( y e. RR /\ z e. RR ) -> ( _i x. ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) ) e. RR ) |
| 35 | oveq2 | |- ( x = ( y - ( _i x. z ) ) -> ( ( y + ( _i x. z ) ) + x ) = ( ( y + ( _i x. z ) ) + ( y - ( _i x. z ) ) ) ) |
|
| 36 | 35 | eleq1d | |- ( x = ( y - ( _i x. z ) ) -> ( ( ( y + ( _i x. z ) ) + x ) e. RR <-> ( ( y + ( _i x. z ) ) + ( y - ( _i x. z ) ) ) e. RR ) ) |
| 37 | oveq2 | |- ( x = ( y - ( _i x. z ) ) -> ( ( y + ( _i x. z ) ) - x ) = ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) ) |
|
| 38 | 37 | oveq2d | |- ( x = ( y - ( _i x. z ) ) -> ( _i x. ( ( y + ( _i x. z ) ) - x ) ) = ( _i x. ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) ) ) |
| 39 | 38 | eleq1d | |- ( x = ( y - ( _i x. z ) ) -> ( ( _i x. ( ( y + ( _i x. z ) ) - x ) ) e. RR <-> ( _i x. ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) ) e. RR ) ) |
| 40 | 36 39 | anbi12d | |- ( x = ( y - ( _i x. z ) ) -> ( ( ( ( y + ( _i x. z ) ) + x ) e. RR /\ ( _i x. ( ( y + ( _i x. z ) ) - x ) ) e. RR ) <-> ( ( ( y + ( _i x. z ) ) + ( y - ( _i x. z ) ) ) e. RR /\ ( _i x. ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) ) e. RR ) ) ) |
| 41 | 40 | rspcev | |- ( ( ( y - ( _i x. z ) ) e. CC /\ ( ( ( y + ( _i x. z ) ) + ( y - ( _i x. z ) ) ) e. RR /\ ( _i x. ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) ) e. RR ) ) -> E. x e. CC ( ( ( y + ( _i x. z ) ) + x ) e. RR /\ ( _i x. ( ( y + ( _i x. z ) ) - x ) ) e. RR ) ) |
| 42 | 8 15 34 41 | syl12anc | |- ( ( y e. RR /\ z e. RR ) -> E. x e. CC ( ( ( y + ( _i x. z ) ) + x ) e. RR /\ ( _i x. ( ( y + ( _i x. z ) ) - x ) ) e. RR ) ) |
| 43 | oveq1 | |- ( A = ( y + ( _i x. z ) ) -> ( A + x ) = ( ( y + ( _i x. z ) ) + x ) ) |
|
| 44 | 43 | eleq1d | |- ( A = ( y + ( _i x. z ) ) -> ( ( A + x ) e. RR <-> ( ( y + ( _i x. z ) ) + x ) e. RR ) ) |
| 45 | oveq1 | |- ( A = ( y + ( _i x. z ) ) -> ( A - x ) = ( ( y + ( _i x. z ) ) - x ) ) |
|
| 46 | 45 | oveq2d | |- ( A = ( y + ( _i x. z ) ) -> ( _i x. ( A - x ) ) = ( _i x. ( ( y + ( _i x. z ) ) - x ) ) ) |
| 47 | 46 | eleq1d | |- ( A = ( y + ( _i x. z ) ) -> ( ( _i x. ( A - x ) ) e. RR <-> ( _i x. ( ( y + ( _i x. z ) ) - x ) ) e. RR ) ) |
| 48 | 44 47 | anbi12d | |- ( A = ( y + ( _i x. z ) ) -> ( ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> ( ( ( y + ( _i x. z ) ) + x ) e. RR /\ ( _i x. ( ( y + ( _i x. z ) ) - x ) ) e. RR ) ) ) |
| 49 | 48 | rexbidv | |- ( A = ( y + ( _i x. z ) ) -> ( E. x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> E. x e. CC ( ( ( y + ( _i x. z ) ) + x ) e. RR /\ ( _i x. ( ( y + ( _i x. z ) ) - x ) ) e. RR ) ) ) |
| 50 | 42 49 | syl5ibrcom | |- ( ( y e. RR /\ z e. RR ) -> ( A = ( y + ( _i x. z ) ) -> E. x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) ) |
| 51 | 50 | rexlimivv | |- ( E. y e. RR E. z e. RR A = ( y + ( _i x. z ) ) -> E. x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) |
| 52 | 1 51 | syl | |- ( A e. CC -> E. x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) |
| 53 | an4 | |- ( ( ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) /\ ( ( A + y ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) ) <-> ( ( ( A + x ) e. RR /\ ( A + y ) e. RR ) /\ ( ( _i x. ( A - x ) ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) ) ) |
|
| 54 | resubcl | |- ( ( ( A + x ) e. RR /\ ( A + y ) e. RR ) -> ( ( A + x ) - ( A + y ) ) e. RR ) |
|
| 55 | pnpcan | |- ( ( A e. CC /\ x e. CC /\ y e. CC ) -> ( ( A + x ) - ( A + y ) ) = ( x - y ) ) |
|
| 56 | 55 | 3expb | |- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( A + x ) - ( A + y ) ) = ( x - y ) ) |
| 57 | 56 | eleq1d | |- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( ( A + x ) - ( A + y ) ) e. RR <-> ( x - y ) e. RR ) ) |
| 58 | 54 57 | imbitrid | |- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( ( A + x ) e. RR /\ ( A + y ) e. RR ) -> ( x - y ) e. RR ) ) |
| 59 | resubcl | |- ( ( ( _i x. ( A - y ) ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) -> ( ( _i x. ( A - y ) ) - ( _i x. ( A - x ) ) ) e. RR ) |
|
| 60 | 59 | ancoms | |- ( ( ( _i x. ( A - x ) ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) -> ( ( _i x. ( A - y ) ) - ( _i x. ( A - x ) ) ) e. RR ) |
| 61 | 3 | a1i | |- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> _i e. CC ) |
| 62 | subcl | |- ( ( A e. CC /\ y e. CC ) -> ( A - y ) e. CC ) |
|
| 63 | 62 | adantrl | |- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( A - y ) e. CC ) |
| 64 | subcl | |- ( ( A e. CC /\ x e. CC ) -> ( A - x ) e. CC ) |
|
| 65 | 64 | adantrr | |- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( A - x ) e. CC ) |
| 66 | 61 63 65 | subdid | |- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( _i x. ( ( A - y ) - ( A - x ) ) ) = ( ( _i x. ( A - y ) ) - ( _i x. ( A - x ) ) ) ) |
| 67 | nnncan1 | |- ( ( A e. CC /\ y e. CC /\ x e. CC ) -> ( ( A - y ) - ( A - x ) ) = ( x - y ) ) |
|
| 68 | 67 | 3com23 | |- ( ( A e. CC /\ x e. CC /\ y e. CC ) -> ( ( A - y ) - ( A - x ) ) = ( x - y ) ) |
| 69 | 68 | 3expb | |- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( A - y ) - ( A - x ) ) = ( x - y ) ) |
| 70 | 69 | oveq2d | |- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( _i x. ( ( A - y ) - ( A - x ) ) ) = ( _i x. ( x - y ) ) ) |
| 71 | 66 70 | eqtr3d | |- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( _i x. ( A - y ) ) - ( _i x. ( A - x ) ) ) = ( _i x. ( x - y ) ) ) |
| 72 | 71 | eleq1d | |- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( ( _i x. ( A - y ) ) - ( _i x. ( A - x ) ) ) e. RR <-> ( _i x. ( x - y ) ) e. RR ) ) |
| 73 | 60 72 | imbitrid | |- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( ( _i x. ( A - x ) ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) -> ( _i x. ( x - y ) ) e. RR ) ) |
| 74 | 58 73 | anim12d | |- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( ( ( A + x ) e. RR /\ ( A + y ) e. RR ) /\ ( ( _i x. ( A - x ) ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) ) -> ( ( x - y ) e. RR /\ ( _i x. ( x - y ) ) e. RR ) ) ) |
| 75 | rimul | |- ( ( ( x - y ) e. RR /\ ( _i x. ( x - y ) ) e. RR ) -> ( x - y ) = 0 ) |
|
| 76 | 75 | a1i | |- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( ( x - y ) e. RR /\ ( _i x. ( x - y ) ) e. RR ) -> ( x - y ) = 0 ) ) |
| 77 | subeq0 | |- ( ( x e. CC /\ y e. CC ) -> ( ( x - y ) = 0 <-> x = y ) ) |
|
| 78 | 77 | biimpd | |- ( ( x e. CC /\ y e. CC ) -> ( ( x - y ) = 0 -> x = y ) ) |
| 79 | 78 | adantl | |- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( x - y ) = 0 -> x = y ) ) |
| 80 | 74 76 79 | 3syld | |- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( ( ( A + x ) e. RR /\ ( A + y ) e. RR ) /\ ( ( _i x. ( A - x ) ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) ) -> x = y ) ) |
| 81 | 53 80 | biimtrid | |- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) /\ ( ( A + y ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) ) -> x = y ) ) |
| 82 | 81 | ralrimivva | |- ( A e. CC -> A. x e. CC A. y e. CC ( ( ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) /\ ( ( A + y ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) ) -> x = y ) ) |
| 83 | oveq2 | |- ( x = y -> ( A + x ) = ( A + y ) ) |
|
| 84 | 83 | eleq1d | |- ( x = y -> ( ( A + x ) e. RR <-> ( A + y ) e. RR ) ) |
| 85 | oveq2 | |- ( x = y -> ( A - x ) = ( A - y ) ) |
|
| 86 | 85 | oveq2d | |- ( x = y -> ( _i x. ( A - x ) ) = ( _i x. ( A - y ) ) ) |
| 87 | 86 | eleq1d | |- ( x = y -> ( ( _i x. ( A - x ) ) e. RR <-> ( _i x. ( A - y ) ) e. RR ) ) |
| 88 | 84 87 | anbi12d | |- ( x = y -> ( ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> ( ( A + y ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) ) ) |
| 89 | 88 | reu4 | |- ( E! x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> ( E. x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) /\ A. x e. CC A. y e. CC ( ( ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) /\ ( ( A + y ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) ) -> x = y ) ) ) |
| 90 | 52 82 89 | sylanbrc | |- ( A e. CC -> E! x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) |