This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for mixed addition and subtraction. (Contributed by NM, 4-Mar-2005) (Revised by Mario Carneiro, 27-May-2016) (Proof shortened by SN, 13-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pnpcan | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - ( A + C ) ) = ( B - C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 2 | subsub4 | |- ( ( ( A + B ) e. CC /\ A e. CC /\ C e. CC ) -> ( ( ( A + B ) - A ) - C ) = ( ( A + B ) - ( A + C ) ) ) |
|
| 3 | 1 2 | stoic4a | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A + B ) - A ) - C ) = ( ( A + B ) - ( A + C ) ) ) |
| 4 | pncan2 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - A ) = B ) |
|
| 5 | 4 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - A ) = B ) |
| 6 | 5 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A + B ) - A ) - C ) = ( B - C ) ) |
| 7 | 3 6 | eqtr3d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - ( A + C ) ) = ( B - C ) ) |