This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnncan1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) - ( A - C ) ) = ( C - B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl | |- ( ( A e. CC /\ C e. CC ) -> ( A - C ) e. CC ) |
|
| 2 | 1 | 3adant2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - C ) e. CC ) |
| 3 | sub32 | |- ( ( A e. CC /\ B e. CC /\ ( A - C ) e. CC ) -> ( ( A - B ) - ( A - C ) ) = ( ( A - ( A - C ) ) - B ) ) |
|
| 4 | 2 3 | syld3an3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) - ( A - C ) ) = ( ( A - ( A - C ) ) - B ) ) |
| 5 | nncan | |- ( ( A e. CC /\ C e. CC ) -> ( A - ( A - C ) ) = C ) |
|
| 6 | 5 | 3adant2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( A - C ) ) = C ) |
| 7 | 6 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - ( A - C ) ) - B ) = ( C - B ) ) |
| 8 | 4 7 | eqtrd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) - ( A - C ) ) = ( C - B ) ) |