This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The conjugate of the representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005) (Proof shortened by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjreim2 | |- ( ( A e. RR /\ B e. RR ) -> ( * ` ( A - ( _i x. B ) ) ) = ( A + ( _i x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjreim | |- ( ( A e. RR /\ B e. RR ) -> ( * ` ( A + ( _i x. B ) ) ) = ( A - ( _i x. B ) ) ) |
|
| 2 | 1 | fveq2d | |- ( ( A e. RR /\ B e. RR ) -> ( * ` ( * ` ( A + ( _i x. B ) ) ) ) = ( * ` ( A - ( _i x. B ) ) ) ) |
| 3 | simpl | |- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
|
| 4 | 3 | recnd | |- ( ( A e. RR /\ B e. RR ) -> A e. CC ) |
| 5 | ax-icn | |- _i e. CC |
|
| 6 | 5 | a1i | |- ( ( A e. RR /\ B e. RR ) -> _i e. CC ) |
| 7 | simpr | |- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
|
| 8 | 7 | recnd | |- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
| 9 | 6 8 | mulcld | |- ( ( A e. RR /\ B e. RR ) -> ( _i x. B ) e. CC ) |
| 10 | 4 9 | addcld | |- ( ( A e. RR /\ B e. RR ) -> ( A + ( _i x. B ) ) e. CC ) |
| 11 | cjcj | |- ( ( A + ( _i x. B ) ) e. CC -> ( * ` ( * ` ( A + ( _i x. B ) ) ) ) = ( A + ( _i x. B ) ) ) |
|
| 12 | 10 11 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( * ` ( * ` ( A + ( _i x. B ) ) ) ) = ( A + ( _i x. B ) ) ) |
| 13 | 2 12 | eqtr3d | |- ( ( A e. RR /\ B e. RR ) -> ( * ` ( A - ( _i x. B ) ) ) = ( A + ( _i x. B ) ) ) |