This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex conjugate is a one-to-one function. (Contributed by NM, 29-Apr-2005) (Proof shortened by Eric Schmidt, 2-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cj11 | |- ( ( A e. CC /\ B e. CC ) -> ( ( * ` A ) = ( * ` B ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( ( * ` A ) = ( * ` B ) -> ( * ` ( * ` A ) ) = ( * ` ( * ` B ) ) ) |
|
| 2 | cjcj | |- ( A e. CC -> ( * ` ( * ` A ) ) = A ) |
|
| 3 | cjcj | |- ( B e. CC -> ( * ` ( * ` B ) ) = B ) |
|
| 4 | 2 3 | eqeqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( * ` ( * ` A ) ) = ( * ` ( * ` B ) ) <-> A = B ) ) |
| 5 | 1 4 | imbitrid | |- ( ( A e. CC /\ B e. CC ) -> ( ( * ` A ) = ( * ` B ) -> A = B ) ) |
| 6 | fveq2 | |- ( A = B -> ( * ` A ) = ( * ` B ) ) |
|
| 7 | 5 6 | impbid1 | |- ( ( A e. CC /\ B e. CC ) -> ( ( * ` A ) = ( * ` B ) <-> A = B ) ) |