This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex conjugate of negative. (Contributed by NM, 27-Feb-2005) (Revised by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjneg | |- ( A e. CC -> ( * ` -u A ) = -u ( * ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recl | |- ( A e. CC -> ( Re ` A ) e. RR ) |
|
| 2 | 1 | recnd | |- ( A e. CC -> ( Re ` A ) e. CC ) |
| 3 | ax-icn | |- _i e. CC |
|
| 4 | imcl | |- ( A e. CC -> ( Im ` A ) e. RR ) |
|
| 5 | 4 | recnd | |- ( A e. CC -> ( Im ` A ) e. CC ) |
| 6 | mulcl | |- ( ( _i e. CC /\ ( Im ` A ) e. CC ) -> ( _i x. ( Im ` A ) ) e. CC ) |
|
| 7 | 3 5 6 | sylancr | |- ( A e. CC -> ( _i x. ( Im ` A ) ) e. CC ) |
| 8 | 2 7 | neg2subd | |- ( A e. CC -> ( -u ( Re ` A ) - -u ( _i x. ( Im ` A ) ) ) = ( ( _i x. ( Im ` A ) ) - ( Re ` A ) ) ) |
| 9 | reneg | |- ( A e. CC -> ( Re ` -u A ) = -u ( Re ` A ) ) |
|
| 10 | imneg | |- ( A e. CC -> ( Im ` -u A ) = -u ( Im ` A ) ) |
|
| 11 | 10 | oveq2d | |- ( A e. CC -> ( _i x. ( Im ` -u A ) ) = ( _i x. -u ( Im ` A ) ) ) |
| 12 | mulneg2 | |- ( ( _i e. CC /\ ( Im ` A ) e. CC ) -> ( _i x. -u ( Im ` A ) ) = -u ( _i x. ( Im ` A ) ) ) |
|
| 13 | 3 5 12 | sylancr | |- ( A e. CC -> ( _i x. -u ( Im ` A ) ) = -u ( _i x. ( Im ` A ) ) ) |
| 14 | 11 13 | eqtrd | |- ( A e. CC -> ( _i x. ( Im ` -u A ) ) = -u ( _i x. ( Im ` A ) ) ) |
| 15 | 9 14 | oveq12d | |- ( A e. CC -> ( ( Re ` -u A ) - ( _i x. ( Im ` -u A ) ) ) = ( -u ( Re ` A ) - -u ( _i x. ( Im ` A ) ) ) ) |
| 16 | 2 7 | negsubdi2d | |- ( A e. CC -> -u ( ( Re ` A ) - ( _i x. ( Im ` A ) ) ) = ( ( _i x. ( Im ` A ) ) - ( Re ` A ) ) ) |
| 17 | 8 15 16 | 3eqtr4d | |- ( A e. CC -> ( ( Re ` -u A ) - ( _i x. ( Im ` -u A ) ) ) = -u ( ( Re ` A ) - ( _i x. ( Im ` A ) ) ) ) |
| 18 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 19 | remim | |- ( -u A e. CC -> ( * ` -u A ) = ( ( Re ` -u A ) - ( _i x. ( Im ` -u A ) ) ) ) |
|
| 20 | 18 19 | syl | |- ( A e. CC -> ( * ` -u A ) = ( ( Re ` -u A ) - ( _i x. ( Im ` -u A ) ) ) ) |
| 21 | remim | |- ( A e. CC -> ( * ` A ) = ( ( Re ` A ) - ( _i x. ( Im ` A ) ) ) ) |
|
| 22 | 21 | negeqd | |- ( A e. CC -> -u ( * ` A ) = -u ( ( Re ` A ) - ( _i x. ( Im ` A ) ) ) ) |
| 23 | 17 20 22 | 3eqtr4d | |- ( A e. CC -> ( * ` -u A ) = -u ( * ` A ) ) |