This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex conjugate of negative. (Contributed by NM, 27-Feb-2005) (Revised by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjneg | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ - 𝐴 ) = - ( ∗ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 3 | ax-icn | ⊢ i ∈ ℂ | |
| 4 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | 4 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 6 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 7 | 3 5 6 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 8 | 2 7 | neg2subd | ⊢ ( 𝐴 ∈ ℂ → ( - ( ℜ ‘ 𝐴 ) − - ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( i · ( ℑ ‘ 𝐴 ) ) − ( ℜ ‘ 𝐴 ) ) ) |
| 9 | reneg | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) ) | |
| 10 | imneg | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ - 𝐴 ) = - ( ℑ ‘ 𝐴 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ - 𝐴 ) ) = ( i · - ( ℑ ‘ 𝐴 ) ) ) |
| 12 | mulneg2 | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · - ( ℑ ‘ 𝐴 ) ) = - ( i · ( ℑ ‘ 𝐴 ) ) ) | |
| 13 | 3 5 12 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · - ( ℑ ‘ 𝐴 ) ) = - ( i · ( ℑ ‘ 𝐴 ) ) ) |
| 14 | 11 13 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ - 𝐴 ) ) = - ( i · ( ℑ ‘ 𝐴 ) ) ) |
| 15 | 9 14 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ - 𝐴 ) − ( i · ( ℑ ‘ - 𝐴 ) ) ) = ( - ( ℜ ‘ 𝐴 ) − - ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 16 | 2 7 | negsubdi2d | ⊢ ( 𝐴 ∈ ℂ → - ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( i · ( ℑ ‘ 𝐴 ) ) − ( ℜ ‘ 𝐴 ) ) ) |
| 17 | 8 15 16 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ - 𝐴 ) − ( i · ( ℑ ‘ - 𝐴 ) ) ) = - ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 18 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 19 | remim | ⊢ ( - 𝐴 ∈ ℂ → ( ∗ ‘ - 𝐴 ) = ( ( ℜ ‘ - 𝐴 ) − ( i · ( ℑ ‘ - 𝐴 ) ) ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ - 𝐴 ) = ( ( ℜ ‘ - 𝐴 ) − ( i · ( ℑ ‘ - 𝐴 ) ) ) ) |
| 21 | remim | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 22 | 21 | negeqd | ⊢ ( 𝐴 ∈ ℂ → - ( ∗ ‘ 𝐴 ) = - ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 23 | 17 20 22 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ - 𝐴 ) = - ( ∗ ‘ 𝐴 ) ) |