This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of Gleason p. 133. (Contributed by NM, 21-Jan-2007) (Revised by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcj | |- ( A e. CC -> ( A + ( * ` A ) ) = ( 2 x. ( Re ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reval | |- ( A e. CC -> ( Re ` A ) = ( ( A + ( * ` A ) ) / 2 ) ) |
|
| 2 | 1 | oveq2d | |- ( A e. CC -> ( 2 x. ( Re ` A ) ) = ( 2 x. ( ( A + ( * ` A ) ) / 2 ) ) ) |
| 3 | cjcl | |- ( A e. CC -> ( * ` A ) e. CC ) |
|
| 4 | addcl | |- ( ( A e. CC /\ ( * ` A ) e. CC ) -> ( A + ( * ` A ) ) e. CC ) |
|
| 5 | 3 4 | mpdan | |- ( A e. CC -> ( A + ( * ` A ) ) e. CC ) |
| 6 | 2cn | |- 2 e. CC |
|
| 7 | 2ne0 | |- 2 =/= 0 |
|
| 8 | divcan2 | |- ( ( ( A + ( * ` A ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( ( A + ( * ` A ) ) / 2 ) ) = ( A + ( * ` A ) ) ) |
|
| 9 | 6 7 8 | mp3an23 | |- ( ( A + ( * ` A ) ) e. CC -> ( 2 x. ( ( A + ( * ` A ) ) / 2 ) ) = ( A + ( * ` A ) ) ) |
| 10 | 5 9 | syl | |- ( A e. CC -> ( 2 x. ( ( A + ( * ` A ) ) / 2 ) ) = ( A + ( * ` A ) ) ) |
| 11 | 2 10 | eqtr2d | |- ( A e. CC -> ( A + ( * ` A ) ) = ( 2 x. ( Re ` A ) ) ) |