This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The circle group T is a submonoid of the multiplicative group of CCfld . (Contributed by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | circgrp.1 | |- C = ( `' abs " { 1 } ) |
|
| circgrp.2 | |- T = ( ( mulGrp ` CCfld ) |`s C ) |
||
| Assertion | circsubm | |- C e. ( SubMnd ` ( mulGrp ` CCfld ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | circgrp.1 | |- C = ( `' abs " { 1 } ) |
|
| 2 | circgrp.2 | |- T = ( ( mulGrp ` CCfld ) |`s C ) |
|
| 3 | oveq2 | |- ( x = y -> ( _i x. x ) = ( _i x. y ) ) |
|
| 4 | 3 | fveq2d | |- ( x = y -> ( exp ` ( _i x. x ) ) = ( exp ` ( _i x. y ) ) ) |
| 5 | 4 | cbvmptv | |- ( x e. RR |-> ( exp ` ( _i x. x ) ) ) = ( y e. RR |-> ( exp ` ( _i x. y ) ) ) |
| 6 | 5 1 | efifo | |- ( x e. RR |-> ( exp ` ( _i x. x ) ) ) : RR -onto-> C |
| 7 | forn | |- ( ( x e. RR |-> ( exp ` ( _i x. x ) ) ) : RR -onto-> C -> ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) = C ) |
|
| 8 | 6 7 | ax-mp | |- ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) = C |
| 9 | 8 | eqcomi | |- C = ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) |
| 10 | 9 | oveq2i | |- ( ( mulGrp ` CCfld ) |`s C ) = ( ( mulGrp ` CCfld ) |`s ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) ) |
| 11 | ax-icn | |- _i e. CC |
|
| 12 | 11 | a1i | |- ( T. -> _i e. CC ) |
| 13 | resubdrg | |- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
|
| 14 | 13 | simpli | |- RR e. ( SubRing ` CCfld ) |
| 15 | subrgsubg | |- ( RR e. ( SubRing ` CCfld ) -> RR e. ( SubGrp ` CCfld ) ) |
|
| 16 | 14 15 | ax-mp | |- RR e. ( SubGrp ` CCfld ) |
| 17 | 16 | a1i | |- ( T. -> RR e. ( SubGrp ` CCfld ) ) |
| 18 | 5 10 12 17 | efsubm | |- ( T. -> ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
| 19 | 18 | mptru | |- ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) |
| 20 | 9 19 | eqeltri | |- C e. ( SubMnd ` ( mulGrp ` CCfld ) ) |