This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The circle group T is a submonoid of the multiplicative group of CCfld . (Contributed by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | circgrp.1 | ⊢ 𝐶 = ( ◡ abs “ { 1 } ) | |
| circgrp.2 | ⊢ 𝑇 = ( ( mulGrp ‘ ℂfld ) ↾s 𝐶 ) | ||
| Assertion | circsubm | ⊢ 𝐶 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | circgrp.1 | ⊢ 𝐶 = ( ◡ abs “ { 1 } ) | |
| 2 | circgrp.2 | ⊢ 𝑇 = ( ( mulGrp ‘ ℂfld ) ↾s 𝐶 ) | |
| 3 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( i · 𝑥 ) = ( i · 𝑦 ) ) | |
| 4 | 3 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( exp ‘ ( i · 𝑥 ) ) = ( exp ‘ ( i · 𝑦 ) ) ) |
| 5 | 4 | cbvmptv | ⊢ ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( exp ‘ ( i · 𝑦 ) ) ) |
| 6 | 5 1 | efifo | ⊢ ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) : ℝ –onto→ 𝐶 |
| 7 | forn | ⊢ ( ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) : ℝ –onto→ 𝐶 → ran ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) = 𝐶 ) | |
| 8 | 6 7 | ax-mp | ⊢ ran ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) = 𝐶 |
| 9 | 8 | eqcomi | ⊢ 𝐶 = ran ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) |
| 10 | 9 | oveq2i | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s 𝐶 ) = ( ( mulGrp ‘ ℂfld ) ↾s ran ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) |
| 11 | ax-icn | ⊢ i ∈ ℂ | |
| 12 | 11 | a1i | ⊢ ( ⊤ → i ∈ ℂ ) |
| 13 | resubdrg | ⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) | |
| 14 | 13 | simpli | ⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
| 15 | subrgsubg | ⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) → ℝ ∈ ( SubGrp ‘ ℂfld ) ) | |
| 16 | 14 15 | ax-mp | ⊢ ℝ ∈ ( SubGrp ‘ ℂfld ) |
| 17 | 16 | a1i | ⊢ ( ⊤ → ℝ ∈ ( SubGrp ‘ ℂfld ) ) |
| 18 | 5 10 12 17 | efsubm | ⊢ ( ⊤ → ran ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) |
| 19 | 18 | mptru | ⊢ ran ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) |
| 20 | 9 19 | eqeltri | ⊢ 𝐶 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) |