This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The second Chebyshev function does not change off the integers. (Contributed by Mario Carneiro, 9-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chpfl | |- ( A e. RR -> ( psi ` ( |_ ` A ) ) = ( psi ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flidm | |- ( A e. RR -> ( |_ ` ( |_ ` A ) ) = ( |_ ` A ) ) |
|
| 2 | 1 | oveq2d | |- ( A e. RR -> ( 1 ... ( |_ ` ( |_ ` A ) ) ) = ( 1 ... ( |_ ` A ) ) ) |
| 3 | 2 | sumeq1d | |- ( A e. RR -> sum_ x e. ( 1 ... ( |_ ` ( |_ ` A ) ) ) ( Lam ` x ) = sum_ x e. ( 1 ... ( |_ ` A ) ) ( Lam ` x ) ) |
| 4 | reflcl | |- ( A e. RR -> ( |_ ` A ) e. RR ) |
|
| 5 | chpval | |- ( ( |_ ` A ) e. RR -> ( psi ` ( |_ ` A ) ) = sum_ x e. ( 1 ... ( |_ ` ( |_ ` A ) ) ) ( Lam ` x ) ) |
|
| 6 | 4 5 | syl | |- ( A e. RR -> ( psi ` ( |_ ` A ) ) = sum_ x e. ( 1 ... ( |_ ` ( |_ ` A ) ) ) ( Lam ` x ) ) |
| 7 | chpval | |- ( A e. RR -> ( psi ` A ) = sum_ x e. ( 1 ... ( |_ ` A ) ) ( Lam ` x ) ) |
|
| 8 | 3 6 7 | 3eqtr4d | |- ( A e. RR -> ( psi ` ( |_ ` A ) ) = ( psi ` A ) ) |