This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of supremum of subset of CH on a singleton. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chsupsn | |- ( A e. CH -> ( \/H ` { A } ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi | |- ( A e. CH -> { A } C_ CH ) |
|
| 2 | chsupval2 | |- ( { A } C_ CH -> ( \/H ` { A } ) = |^| { x e. CH | U. { A } C_ x } ) |
|
| 3 | 1 2 | syl | |- ( A e. CH -> ( \/H ` { A } ) = |^| { x e. CH | U. { A } C_ x } ) |
| 4 | unisng | |- ( A e. CH -> U. { A } = A ) |
|
| 5 | eqimss | |- ( U. { A } = A -> U. { A } C_ A ) |
|
| 6 | 4 5 | syl | |- ( A e. CH -> U. { A } C_ A ) |
| 7 | 6 | ancli | |- ( A e. CH -> ( A e. CH /\ U. { A } C_ A ) ) |
| 8 | sseq2 | |- ( x = A -> ( U. { A } C_ x <-> U. { A } C_ A ) ) |
|
| 9 | 8 | elrab | |- ( A e. { x e. CH | U. { A } C_ x } <-> ( A e. CH /\ U. { A } C_ A ) ) |
| 10 | 7 9 | sylibr | |- ( A e. CH -> A e. { x e. CH | U. { A } C_ x } ) |
| 11 | intss1 | |- ( A e. { x e. CH | U. { A } C_ x } -> |^| { x e. CH | U. { A } C_ x } C_ A ) |
|
| 12 | 10 11 | syl | |- ( A e. CH -> |^| { x e. CH | U. { A } C_ x } C_ A ) |
| 13 | ssintub | |- U. { A } C_ |^| { x e. CH | U. { A } C_ x } |
|
| 14 | 4 13 | eqsstrrdi | |- ( A e. CH -> A C_ |^| { x e. CH | U. { A } C_ x } ) |
| 15 | 12 14 | eqssd | |- ( A e. CH -> |^| { x e. CH | U. { A } C_ x } = A ) |
| 16 | 3 15 | eqtrd | |- ( A e. CH -> ( \/H ` { A } ) = A ) |