This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for Hilbert lattice join. From definition of lattice in Kalmbach p. 14. (Contributed by NM, 10-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chjass | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A vH B ) vH C ) = ( A vH ( B vH C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( A = if ( A e. CH , A , ~H ) -> ( A vH B ) = ( if ( A e. CH , A , ~H ) vH B ) ) |
|
| 2 | 1 | oveq1d | |- ( A = if ( A e. CH , A , ~H ) -> ( ( A vH B ) vH C ) = ( ( if ( A e. CH , A , ~H ) vH B ) vH C ) ) |
| 3 | oveq1 | |- ( A = if ( A e. CH , A , ~H ) -> ( A vH ( B vH C ) ) = ( if ( A e. CH , A , ~H ) vH ( B vH C ) ) ) |
|
| 4 | 2 3 | eqeq12d | |- ( A = if ( A e. CH , A , ~H ) -> ( ( ( A vH B ) vH C ) = ( A vH ( B vH C ) ) <-> ( ( if ( A e. CH , A , ~H ) vH B ) vH C ) = ( if ( A e. CH , A , ~H ) vH ( B vH C ) ) ) ) |
| 5 | oveq2 | |- ( B = if ( B e. CH , B , ~H ) -> ( if ( A e. CH , A , ~H ) vH B ) = ( if ( A e. CH , A , ~H ) vH if ( B e. CH , B , ~H ) ) ) |
|
| 6 | 5 | oveq1d | |- ( B = if ( B e. CH , B , ~H ) -> ( ( if ( A e. CH , A , ~H ) vH B ) vH C ) = ( ( if ( A e. CH , A , ~H ) vH if ( B e. CH , B , ~H ) ) vH C ) ) |
| 7 | oveq1 | |- ( B = if ( B e. CH , B , ~H ) -> ( B vH C ) = ( if ( B e. CH , B , ~H ) vH C ) ) |
|
| 8 | 7 | oveq2d | |- ( B = if ( B e. CH , B , ~H ) -> ( if ( A e. CH , A , ~H ) vH ( B vH C ) ) = ( if ( A e. CH , A , ~H ) vH ( if ( B e. CH , B , ~H ) vH C ) ) ) |
| 9 | 6 8 | eqeq12d | |- ( B = if ( B e. CH , B , ~H ) -> ( ( ( if ( A e. CH , A , ~H ) vH B ) vH C ) = ( if ( A e. CH , A , ~H ) vH ( B vH C ) ) <-> ( ( if ( A e. CH , A , ~H ) vH if ( B e. CH , B , ~H ) ) vH C ) = ( if ( A e. CH , A , ~H ) vH ( if ( B e. CH , B , ~H ) vH C ) ) ) ) |
| 10 | oveq2 | |- ( C = if ( C e. CH , C , ~H ) -> ( ( if ( A e. CH , A , ~H ) vH if ( B e. CH , B , ~H ) ) vH C ) = ( ( if ( A e. CH , A , ~H ) vH if ( B e. CH , B , ~H ) ) vH if ( C e. CH , C , ~H ) ) ) |
|
| 11 | oveq2 | |- ( C = if ( C e. CH , C , ~H ) -> ( if ( B e. CH , B , ~H ) vH C ) = ( if ( B e. CH , B , ~H ) vH if ( C e. CH , C , ~H ) ) ) |
|
| 12 | 11 | oveq2d | |- ( C = if ( C e. CH , C , ~H ) -> ( if ( A e. CH , A , ~H ) vH ( if ( B e. CH , B , ~H ) vH C ) ) = ( if ( A e. CH , A , ~H ) vH ( if ( B e. CH , B , ~H ) vH if ( C e. CH , C , ~H ) ) ) ) |
| 13 | 10 12 | eqeq12d | |- ( C = if ( C e. CH , C , ~H ) -> ( ( ( if ( A e. CH , A , ~H ) vH if ( B e. CH , B , ~H ) ) vH C ) = ( if ( A e. CH , A , ~H ) vH ( if ( B e. CH , B , ~H ) vH C ) ) <-> ( ( if ( A e. CH , A , ~H ) vH if ( B e. CH , B , ~H ) ) vH if ( C e. CH , C , ~H ) ) = ( if ( A e. CH , A , ~H ) vH ( if ( B e. CH , B , ~H ) vH if ( C e. CH , C , ~H ) ) ) ) ) |
| 14 | ifchhv | |- if ( A e. CH , A , ~H ) e. CH |
|
| 15 | ifchhv | |- if ( B e. CH , B , ~H ) e. CH |
|
| 16 | ifchhv | |- if ( C e. CH , C , ~H ) e. CH |
|
| 17 | 14 15 16 | chjassi | |- ( ( if ( A e. CH , A , ~H ) vH if ( B e. CH , B , ~H ) ) vH if ( C e. CH , C , ~H ) ) = ( if ( A e. CH , A , ~H ) vH ( if ( B e. CH , B , ~H ) vH if ( C e. CH , C , ~H ) ) ) |
| 18 | 4 9 13 17 | dedth3h | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A vH B ) vH C ) = ( A vH ( B vH C ) ) ) |