This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for Hilbert lattice join. From definition of lattice in Kalmbach p. 14. (Contributed by NM, 10-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ch0le.1 | |- A e. CH |
|
| chjcl.2 | |- B e. CH |
||
| chjass.3 | |- C e. CH |
||
| Assertion | chjassi | |- ( ( A vH B ) vH C ) = ( A vH ( B vH C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | |- A e. CH |
|
| 2 | chjcl.2 | |- B e. CH |
|
| 3 | chjass.3 | |- C e. CH |
|
| 4 | inass | |- ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) i^i ( _|_ ` C ) ) = ( ( _|_ ` A ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) |
|
| 5 | 1 2 | chdmj1i | |- ( _|_ ` ( A vH B ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) |
| 6 | 5 | ineq1i | |- ( ( _|_ ` ( A vH B ) ) i^i ( _|_ ` C ) ) = ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) i^i ( _|_ ` C ) ) |
| 7 | 2 3 | chdmj1i | |- ( _|_ ` ( B vH C ) ) = ( ( _|_ ` B ) i^i ( _|_ ` C ) ) |
| 8 | 7 | ineq2i | |- ( ( _|_ ` A ) i^i ( _|_ ` ( B vH C ) ) ) = ( ( _|_ ` A ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) |
| 9 | 4 6 8 | 3eqtr4i | |- ( ( _|_ ` ( A vH B ) ) i^i ( _|_ ` C ) ) = ( ( _|_ ` A ) i^i ( _|_ ` ( B vH C ) ) ) |
| 10 | 9 | fveq2i | |- ( _|_ ` ( ( _|_ ` ( A vH B ) ) i^i ( _|_ ` C ) ) ) = ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` ( B vH C ) ) ) ) |
| 11 | 1 2 | chjcli | |- ( A vH B ) e. CH |
| 12 | 11 3 | chdmm4i | |- ( _|_ ` ( ( _|_ ` ( A vH B ) ) i^i ( _|_ ` C ) ) ) = ( ( A vH B ) vH C ) |
| 13 | 2 3 | chjcli | |- ( B vH C ) e. CH |
| 14 | 1 13 | chdmm4i | |- ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` ( B vH C ) ) ) ) = ( A vH ( B vH C ) ) |
| 15 | 10 12 14 | 3eqtr3i | |- ( ( A vH B ) vH C ) = ( A vH ( B vH C ) ) |