This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for Hilbert lattice join. From definition of lattice in Kalmbach p. 14. (Contributed by NM, 10-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chjass | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) = ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) = ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) ) |
| 3 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ) | |
| 4 | 2 3 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) = ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ↔ ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) |
| 5 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) | |
| 6 | 5 | oveq1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) = ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ∨ℋ 𝐶 ) ) |
| 7 | oveq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( 𝐵 ∨ℋ 𝐶 ) = ( if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∨ℋ 𝐶 ) ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∨ℋ 𝐶 ) ) ) |
| 9 | 6 8 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ↔ ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ∨ℋ 𝐶 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∨ℋ 𝐶 ) ) ) ) |
| 10 | oveq2 | ⊢ ( 𝐶 = if ( 𝐶 ∈ Cℋ , 𝐶 , ℋ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ∨ℋ 𝐶 ) = ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ∨ℋ if ( 𝐶 ∈ Cℋ , 𝐶 , ℋ ) ) ) | |
| 11 | oveq2 | ⊢ ( 𝐶 = if ( 𝐶 ∈ Cℋ , 𝐶 , ℋ ) → ( if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∨ℋ 𝐶 ) = ( if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∨ℋ if ( 𝐶 ∈ Cℋ , 𝐶 , ℋ ) ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝐶 = if ( 𝐶 ∈ Cℋ , 𝐶 , ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∨ℋ 𝐶 ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∨ℋ if ( 𝐶 ∈ Cℋ , 𝐶 , ℋ ) ) ) ) |
| 13 | 10 12 | eqeq12d | ⊢ ( 𝐶 = if ( 𝐶 ∈ Cℋ , 𝐶 , ℋ ) → ( ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ∨ℋ 𝐶 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∨ℋ 𝐶 ) ) ↔ ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ∨ℋ if ( 𝐶 ∈ Cℋ , 𝐶 , ℋ ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∨ℋ if ( 𝐶 ∈ Cℋ , 𝐶 , ℋ ) ) ) ) ) |
| 14 | ifchhv | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∈ Cℋ | |
| 15 | ifchhv | ⊢ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∈ Cℋ | |
| 16 | ifchhv | ⊢ if ( 𝐶 ∈ Cℋ , 𝐶 , ℋ ) ∈ Cℋ | |
| 17 | 14 15 16 | chjassi | ⊢ ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ∨ℋ if ( 𝐶 ∈ Cℋ , 𝐶 , ℋ ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∨ℋ if ( 𝐶 ∈ Cℋ , 𝐶 , ℋ ) ) ) |
| 18 | 4 9 13 17 | dedth3h | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) = ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ) |